Dynamic balance of a biped robot using fuzzy reinforcement learning agents

C Zhou, Q Meng - Fuzzy sets and Systems, 2003 - Elsevier
This paper presents a general fuzzy reinforcement learning (FRL) method for biped dynamic
balance control. Based on a neuro-fuzzy network architecture, different kinds of expert …

Knowledge acquisition in fuzzy-rule-based systems with particle-swarm optimization

RP Prado, S Garcia-Galán… - IEEE Transactions on …, 2010 - ieeexplore.ieee.org
Knowledge acquisition is a long-standing problem in fuzzy-rule-based systems. In spite of
the existence of several approaches, much effort is still required to increase the efficiency of …

Learning and adaptation of an intelligent mobile robot navigator operating in unstructured environment based on a novel online Fuzzy–Genetic system

H Hagras, V Callaghan, M Colley - Fuzzy Sets and Systems, 2004 - Elsevier
In this paper we present our novel Fuzzy–Genetic techniques for the online learning and
adaptation of an intelligent robotic navigator system. Such a system could be used by …

Comparing harmonic functions and potential fields in the trajectory control of mobile robots

G Faria, RAF Romero, E Prestes… - IEEE Conference on …, 2004 - ieeexplore.ieee.org
Potential field is a reactive method that has been used for trajectory control of mobile robots.
In this method the robot behaves like a particle moving under the influence of an artificial …

[PDF][PDF] Uma Arquitetura de controle inteligente para múltiplos robôs

G Faria - São Carlos-SP, 2006 - pdfs.semanticscholar.org
O desenvolvimento de arquiteturas de controle para múltiplos robôs em ambientes
dinâmicos tem sido tema de pesquisas na área de robótica. A complexidade deste tema …

Hybrid Framework for UAV Motion Planning and Obstacle Avoidance: Integrating Deep Reinforcement Learning with Fuzzy Logic

B Xia, I Mantegh, WF Xie - 2024 10th International Conference …, 2024 - ieeexplore.ieee.org
Utilizing Uncrewed Aerial Vehicles (UAVs) offers a cost-effective and flexible option for
various applications. However, achieving collision-free autonomous navigation requires …

Navegação de robôs móveis utilizando aprendizado por reforço e lógica fuzzi

G Faria, RAF Romero - Sba: Controle & Automação Sociedade …, 2002 - SciELO Brasil
Aprendizado por Reforço pode ser visto como uma forma de programar agentes utilizando
recompensas e punições para resolver tarefas específicas através de interações com o …

Multi mobile robot navigation using distributed value function reinforcement learning

S Babvey, O Momtahan… - 2003 IEEE International …, 2003 - ieeexplore.ieee.org
In this paper we propose a new fuzzy-based navigation system for two intelligent mobile
robots using distributed value function reinforcement learning. The robots use their sensors …

Campos potenciais modificados aplicados ao controle de múltiplos robôs

MO Silva - 2011 - teses.usp.br
Este trabalho aborda o problema de planejamento de caminhos em robótica móvel
autônoma utilizando campos potenciais. Dentre as várias técnicas de campos potenciais …

Rule abstraction and transfer in reinforcement learning by decision tree

M Wu, A Yamashita, H Asama - 2012 IEEE/SICE International …, 2012 - ieeexplore.ieee.org
Reinforcement learning agents store their knowledge such as state-action value in look-up
tables. However, loop-up table requires large memory space when number of states …