[PDF][PDF] An unconditionally stable scheme for two-dimensional convection-diffusion-reaction equations

C Nwaigwe - no. January, 2022 - researchgate.net
An unconditionally stable difference scheme is developed and fully analyzed for two-
dimensional convection-diffusion-reaction equations with nonlinear coefficients and external …

Computation of the unknown volatility from integral option price observations in jump–diffusion models

SG Georgiev, LG Vulkov - Mathematics and Computers in Simulation, 2021 - Elsevier
In this work we propose a simple and efficient algorithm to numerically approximate the time-
dependent implied volatility for jump–diffusion models in option pricing that generalize the …

Finite Difference Investigation of a Polluted Non-Isothermal Variable-Viscosity Porous Media Flow

C Nwaigwe, OD Makinde - Diffusion Foundations, 2020 - Trans Tech Publ
We extend previous studies of channel flows to porous media flows with combined effects
ofboth heat and mass transfer. We consider a temperaturedependent viscosity fluid and a …

Analysis and application of a convergent difference scheme to nonlinear transport in a Brinkman flow

C Nwaigwe - International Journal of Numerical Methods for Heat & …, 2020 - emerald.com
Purpose The purpose of this paper is to formulate and analyse a convergent numerical
scheme and apply it to investigate the coupled problem of fluid flow with heat and mass …

[PDF][PDF] Computational analysis of porous channel flow with cross-diffusion

C Nwaigwe, A Weli, OD Makinde - American Journal of …, 2019 - researchgate.net
We investigate the heat and mass transfer in a variable-viscosity channel flow
simultaneously accounting for viscous dissipation, external pollutant injection and Soret …

Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability

C Nwaigwe, J Oahimire, A Weli - Applied and Computational Mechanics, 2023 - kme.zcu.cz
This paper investigates the nonlinear dispersion of a pollutant in a non-isothermal
incompressible flow of a temperature-dependent viscosity fluid in a rectangular channel …

Compact and monotone difference schemes for parabolic equations

PP Matus, BD Utebaev - Mathematical Models and Computer Simulations, 2021 - Springer
In this paper, we consider compact and monotone difference schemes of the fourth order of
approximation for linear, semilinear, and quasi-linear equations of the parabolic type. For …

Consistent two-sided estimates for the solutions of quasilinear parabolic equations and their approximations

PP Matus, DB Poliakov - Differential Equations, 2017 - Springer
For a linearized finite-difference scheme approximating the Dirichlet problem for a
multidimensional quasilinear parabolic equation with unbounded nonlinearity, we establish …

Monotone finite-difference schemes with second order approximation based on regularization approach for the dirichlet boundary problem of the gamma equation

TTH Hanh, DNH Thanh - IEEE Access, 2020 - ieeexplore.ieee.org
We investigate the initial boundary value problem for the Gamma equation transformed from
the nonlinear Black-Scholes equation for pricing option to a quasilinear parabolic equation …

Компактные и монотонные разностные схемы для параболических уравнений

ПП Матус, БД Утебаев - Математическое моделирование, 2021 - mathnet.ru
В настоящей работе рассматриваются компактные и монотонные разностные схемы
четвертого порядка аппроксимации для линейных, полулинейных и квазилинейных …