Learning to detect good 3D keypoints

A Tonioni, S Salti, F Tombari, R Spezialetti… - International Journal of …, 2018 - Springer
The established approach to 3D keypoint detection consists in defining effective handcrafted
saliency functions based on geometric cues with the aim of maximizing keypoint …

Concept activation vectors for generating user-defined 3D shapes

S Druc, A Balu, P Wooldridge… - Proceedings of the …, 2022 - openaccess.thecvf.com
We explore the interpretability of 3D geometric deep learning models in the context of
Computer-Aided Design (CAD). The field of parametric CAD can be limited by the difficulty of …

[PDF][PDF] 基于稀疏自动编码器算法的HBV 再激活分类预测模型

赵咏旺, 刘毅慧, 黄伟 - 智能计算机与应用, 2019 - cs.hit.edu.cn
原发性肝癌患者在接受精确放疗后易引起乙型肝炎病毒(HBV) 再激活. 本文的研究目的就是根据
已有的患者临床数据, 建立分类预测模型来及时做出预测防护, 从而在一定程度上降低HBV …

[PDF][PDF] Evaluation of 3D Registration Deep Learning Methods Using Iterative Transformation Estimations

D Bojanić, K Bartol, T Petković… - … and Exhibition on 3D …, 2020 - researchgate.net
Abstract 3D registration is a process of aligning multiple three-dimensional (3D) data
structures (such as point clouds or meshes) and merging them into one consistent and …

Computer implemented method for generating a 3d object

R Ahlfeld, S Sathyanandha, P Wooldridge… - US Patent App. 18 …, 2024 - Google Patents
There is provided a method for a computer implemented method for generating a 3D object.
The method comprises training a machine learning system to learn design parameter values …