[HTML][HTML] Clinical information extraction applications: a literature review

Y Wang, L Wang, M Rastegar-Mojarad, S Moon… - Journal of biomedical …, 2018 - Elsevier
Background With the rapid adoption of electronic health records (EHRs), it is desirable to
harvest information and knowledge from EHRs to support automated systems at the point of …

A review of machine learning and deep learning approaches on mental health diagnosis

NK Iyortsuun, SH Kim, M Jhon, HJ Yang, S Pant - Healthcare, 2023 - mdpi.com
Combating mental illnesses such as depression and anxiety has become a global concern.
As a result of the necessity for finding effective ways to battle these problems, machine …

Publicly available clinical BERT embeddings

E Alsentzer, JR Murphy, W Boag, WH Weng… - arXiv preprint arXiv …, 2019 - arxiv.org
Contextual word embedding models such as ELMo (Peters et al., 2018) and BERT (Devlin et
al., 2018) have dramatically improved performance for many natural language processing …

Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review

K Kreimeyer, M Foster, A Pandey, N Arya… - Journal of biomedical …, 2017 - Elsevier
We followed a systematic approach based on the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses to identify existing clinical natural language processing (NLP) …

Enhancing clinical concept extraction with contextual embeddings

Y Si, J Wang, H Xu, K Roberts - Journal of the American Medical …, 2019 - academic.oup.com
Objective Neural network–based representations (“embeddings”) have dramatically
advanced natural language processing (NLP) tasks, including clinical NLP tasks such as …

CLAMP–a toolkit for efficiently building customized clinical natural language processing pipelines

E Soysal, J Wang, M Jiang, Y Wu… - Journal of the …, 2018 - academic.oup.com
Existing general clinical natural language processing (NLP) systems such as MetaMap and
Clinical Text Analysis and Knowledge Extraction System have been successfully applied to …

Clinical concept extraction using transformers

X Yang, J Bian, WR Hogan, Y Wu - Journal of the American …, 2020 - academic.oup.com
Objective The goal of this study is to explore transformer-based models (eg, Bidirectional
Encoder Representations from Transformers [BERT]) for clinical concept extraction and …

Clinical text datasets for medical artificial intelligence and large language models—a systematic review

J Wu, X Liu, M Li, W Li, Z Su, S Lin, L Garay, Z Zhang… - NEJM AI, 2024 - ai.nejm.org
Privacy and ethical considerations limit access to large-scale clinical datasets, particularly
clinical text data, which contain extensive and diverse information and serve as the …

A survey on recent named entity recognition and relationship extraction techniques on clinical texts

P Bose, S Srinivasan, WC Sleeman IV, J Palta… - Applied Sciences, 2021 - mdpi.com
Significant growth in Electronic Health Records (EHR) over the last decade has provided an
abundance of clinical text that is mostly unstructured and untapped. This huge amount of …

Information extraction from electronic medical documents: state of the art and future research directions

MY Landolsi, L Hlaoua, L Ben Romdhane - Knowledge and Information …, 2023 - Springer
In the medical field, a doctor must have a comprehensive knowledge by reading and writing
narrative documents, and he is responsible for every decision he takes for patients …