Quantum-Inspired Resource Optimization for 6G Networks: A Survey

MO Butt, N Waheed, TQ Duong… - … Surveys & Tutorials, 2024 - ieeexplore.ieee.org
The Internet of things (IoT) drives an exponential surge in computing and communication
devices. Consequently, it triggers capacity, coverage, interference, latency, and security …

A survey on quantum reinforcement learning

N Meyer, C Ufrecht, M Periyasamy, DD Scherer… - arXiv preprint arXiv …, 2022 - arxiv.org
Quantum reinforcement learning is an emerging field at the intersection of quantum
computing and machine learning. While we intend to provide a broad overview of the …

A Quantum Reinforcement Learning Approach for Joint Resource Allocation and Task Offloading in Mobile Edge Computing

X Wei, X Gao, K Ye, CZ Xu… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Mobile edge computing (MEC) has revolutionized the way computational tasks are offloaded
and latency is reduced by leveraging edge servers close to end devices. Efficient resource …

Quantum contextual bandits and recommender systems for quantum data

S Brahmachari, J Lumbreras, M Tomamichel - Quantum Machine …, 2024 - Springer
We study a recommender system for quantum data using the linear contextual bandit
framework. In each round, a learner receives an observable (the context) and has to …

面向图数据的量子行走模型及算法研究进展.

梁文, 张文波 - Journal of Frontiers of Computer Science & …, 2024 - search.ebscohost.com
作为量子计算的通用计算模型, 量子行走广泛应用于安全通信, 快速搜索, 相似性计算以及图挖掘
等领域. 现阶段研究者对量子行走的设计思路, 未来发展以及模型与算法间的相互关系关注甚少 …

Quantum Kernelized Bandits

Y Hikima, K Murao, S Takemori, Y Umeda - The 40th Conference on … - openreview.net
We consider the quantum kernelized bandit problem, where the player observes information
of rewards through quantum circuits termed the quantum reward oracle, and the mean …

[引用][C] Research Advances of Quantum Walk Models and its Algorithms for Graph Data

L Wen, Z Wenbo - Journal of Frontiers of Computer Science & Technology