[HTML][HTML] The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and …

AF Markus, JA Kors, PR Rijnbeek - Journal of biomedical informatics, 2021 - Elsevier
Artificial intelligence (AI) has huge potential to improve the health and well-being of people,
but adoption in clinical practice is still limited. Lack of transparency is identified as one of the …

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

AB Arrieta, N Díaz-Rodríguez, J Del Ser, A Bennetot… - Information fusion, 2020 - Elsevier
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if
harnessed appropriately, may deliver the best of expectations over many application sectors …

[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

S Ali, T Abuhmed, S El-Sappagh, K Muhammad… - Information fusion, 2023 - Elsevier
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …

[HTML][HTML] Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities

W Saeed, C Omlin - Knowledge-Based Systems, 2023 - Elsevier
The past decade has seen significant progress in artificial intelligence (AI), which has
resulted in algorithms being adopted for resolving a variety of problems. However, this …

What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research

M Langer, D Oster, T Speith, H Hermanns, L Kästner… - Artificial Intelligence, 2021 - Elsevier
Abstract Previous research in Explainable Artificial Intelligence (XAI) suggests that a main
aim of explainability approaches is to satisfy specific interests, goals, expectations, needs …

Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale

B Wang, PLP Rau, T Yuan - Behaviour & information technology, 2023 - Taylor & Francis
As artificial intelligence (AI) became a part of daily life, it has become important to determine
user competence in using AI technology. Here, we propose the concept of AI literacy and …

A historical perspective of explainable Artificial Intelligence

R Confalonieri, L Coba, B Wagner… - … Reviews: Data Mining …, 2021 - Wiley Online Library
Abstract Explainability in Artificial Intelligence (AI) has been revived as a topic of active
research by the need of conveying safety and trust to users in the “how” and “why” of …

Change detection based on artificial intelligence: State-of-the-art and challenges

W Shi, M Zhang, R Zhang, S Chen, Z Zhan - Remote Sensing, 2020 - mdpi.com
Change detection based on remote sensing (RS) data is an important method of detecting
changes on the Earth's surface and has a wide range of applications in urban planning …

Explainable deep learning: A field guide for the uninitiated

G Ras, N Xie, M Van Gerven, D Doran - Journal of Artificial Intelligence …, 2022 - jair.org
Deep neural networks (DNNs) are an indispensable machine learning tool despite the
difficulty of diagnosing what aspects of a model's input drive its decisions. In countless real …

Influencing human–AI interaction by priming beliefs about AI can increase perceived trustworthiness, empathy and effectiveness

P Pataranutaporn, R Liu, E Finn, P Maes - Nature Machine Intelligence, 2023 - nature.com
As conversational agents powered by large language models become more human-like,
users are starting to view them as companions rather than mere assistants. Our study …