[HTML][HTML] Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion

L Alzubaidi, ALD Khamael, A Salhi, Z Alammar… - Artificial Intelligence in …, 2024 - Elsevier
Deep learning (DL) in orthopaedics has gained significant attention in recent years.
Previous studies have shown that DL can be applied to a wide variety of orthopaedic tasks …

Artificial intelligence in clinical genetics

D Duong, BD Solomon - European Journal of Human Genetics, 2025 - nature.com
Artificial intelligence (AI) has been growing more powerful and accessible, and will
increasingly impact many areas, including virtually all aspects of medicine and biomedical …

Molecular mechanisms of human overgrowth and use of omics in its diagnostics: chances and challenges

D Prawitt, T Eggermann - Frontiers in Genetics, 2024 - frontiersin.org
Overgrowth disorders comprise a group of entities with a variable phenotypic spectrum
ranging from tall stature to isolated or lateralized overgrowth of body parts and or organs …

GestaltMatcher Database-A global reference for facial phenotypic variability in rare human diseases

H Lesmann, A Hustinx, S Moosa… - Research …, 2024 - pmc.ncbi.nlm.nih.gov
The most important factor that complicates the work of dysmorphologists is the significant
phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that …

Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade

HC Ruitenbeek, EHG Oei, JJ Visser, R Kijowski - Skeletal Radiology, 2024 - Springer
This article will provide a perspective review of the most extensively investigated deep
learning (DL) applications for musculoskeletal disease detection that have the best potential …

Acromesomelic Dysplasia With Homozygosity for a Likely Pathogenic BMPR1B Variant: Postaxial Polydactyly as a Novel Clinical Finding

IM Abdelrazek, A Knaus, B Javanmardi… - … Genetics & Genomic …, 2024 - Wiley Online Library
Background Acromesomelic chondrodysplasias are a rare subgroup of the clinically and
genetically heterogeneous osteochondrodysplasias that are characterised by abnormalities …

Doctor simulator: Delta-Age-Sex-AdaIn enhancing bone age assessment through AdaIn style transfer

L Wang, X Zhang, P Chen, D Zhou - Pediatric Radiology, 2024 - Springer
Background Bone age assessment assists physicians in evaluating the growth and
development of children. However, deep learning methods for bone age estimation do not …

Inteligencia artificial para el abordaje integral de las enfermedades huérfanas/raras: revisión sistemática exploratoria

LMA Ruge, DAV Lesmes, EHH Rincón… - Medicina de Familia …, 2025 - Elsevier
Introducción Las enfermedades huérfanas (EH) son raras, pero colectivamente comunes,
presentan desafíos como diagnósticos tardíos, progresión de la enfermedad y escasa oferta …

Deep Learning for Accurate Bone Age Estimation: A Reliable VGG19-Based Methodology

V Gupta, A Bhattacherjee, A Dogra… - … on Decision Aid …, 2024 - ieeexplore.ieee.org
Bone age assessment plays a critical role in diagnosing growth disorders and identifying
developmental milestones, providing guidance for the timing of various clinical interventions …

Integral Bone Age Regression

ŞG Doncean, V Barbu, R Balcan, R Miron… - Procedia Computer …, 2024 - Elsevier
The paper takes a practical approach to estimating the bone age of children and young
adults based on hand radiography, by constructing an end-to-end pipeline that involves …