[PDF][PDF] Recent Advances in Concept Drift Adaptation Methods for Deep Learning.

L Yuan, H Li, B Xia, C Gao, M Liu, W Yuan, X You - IJCAI, 2022 - ijcai.org
Abstract In the “Big Data” age, the amount and distribution of data have increased wildly and
changed over time in various time-series-based tasks, eg weather prediction, network …

ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams

A Cano, B Krawczyk - Machine Learning, 2022 - Springer
Data streams are potentially unbounded sequences of instances arriving over time to a
classifier. Designing algorithms that are capable of dealing with massive, rapidly arriving …

[PDF][PDF] Smart pools of data with ensembles for adaptive learning in dynamic data streams with class imbalance

RV Kulkarni, S Revathy, SH Patil - IAES International Journal of …, 2022 - researchgate.net
Streaming data incorporates dynamicity due to a nonstationary environment where data
samples may endure class imbalance and change in data distribution over the period …

Data stream classification using a deep transfer learning method based on extreme learning machine and recurrent neural network

M Eskandari, H Khotanlou - Multimedia Tools and Applications, 2024 - Springer
Deep learning-based approaches have gained popularity for many applications in recent
years and have become the state-of-the-art method in machine learning applications …

Machine Learning and Data Mining Algorithms for Geospatial Big Data

L Di, E Yu - Remote Sensing Big Data, 2023 - Springer
This chapter focuses on strategies to extend and adapt traditional machine learning
algorithms for remote sensing and geospatial big data. Ten major strategies are discussed …

Sensor-driven learning of time-dependent parameters for prescriptive analytics

A Bousdekis, N Papageorgiou, B Magoutas… - IEEE …, 2020 - ieeexplore.ieee.org
Big data analytics is rapidly emerging as a key Internet of Things (IoT) initiative aiming at
providing meaningful insights and supporting optimal decision making under time …

[PDF][PDF] Classifier ensemble algorithm for learning from non-stationary data stream

A Verdecia-Cabrera, IF Blanco, AO Días… - Revista Cubana de …, 2019 - rcci.uci.cu
En la actualidad, muchas fuentes generan flujos de datos ilimitados a altas tasas de
entrada. Es imposible almacenar estos grandes volúmenes de datos por lo que es …

Hybrid Metaheuristic Methods for Ensemble Classification in Non-stationary Data Streams

H Ghomeshi - 2020 - open-access.bcu.ac.uk
The extensive growth of digital technologies has led to new challenges in terms of
processing and distilling insights from data that generated continuously in real-time. To …

[HTML][HTML] Ensamble de clasificadores para el aprendizaje a partir de flujos de datos no estacionarios.

A Verdecia Cabrera, I Frías Blanco… - Revista Cubana de …, 2019 - scielo.sld.cu
En la actualidad, muchas fuentes generan flujos de datos ilimitados a altas tasas de
entrada. Es imposible almacenar estos grandes volúmenes de datos por lo que es …

[PDF][PDF] Classifier ensemble algorithm for learning from non-stationary data stream

AV Cabrera, IF Blanco, AO Diaz, YR Zarabia… - Revista Cubana de …, 2019 - redalyc.org
En la actualidad, muchas fuentes generan flujos de datos ilimitados a altas tasas de
entrada. Es imposible almacenar estos grandes volúmenes de datos por lo que es …