Data streams are potentially unbounded sequences of instances arriving over time to a classifier. Designing algorithms that are capable of dealing with massive, rapidly arriving …
RV Kulkarni, S Revathy, SH Patil - IAES International Journal of …, 2022 - researchgate.net
Streaming data incorporates dynamicity due to a nonstationary environment where data samples may endure class imbalance and change in data distribution over the period …
M Eskandari, H Khotanlou - Multimedia Tools and Applications, 2024 - Springer
Deep learning-based approaches have gained popularity for many applications in recent years and have become the state-of-the-art method in machine learning applications …
L Di, E Yu - Remote Sensing Big Data, 2023 - Springer
This chapter focuses on strategies to extend and adapt traditional machine learning algorithms for remote sensing and geospatial big data. Ten major strategies are discussed …
Big data analytics is rapidly emerging as a key Internet of Things (IoT) initiative aiming at providing meaningful insights and supporting optimal decision making under time …
En la actualidad, muchas fuentes generan flujos de datos ilimitados a altas tasas de entrada. Es imposible almacenar estos grandes volúmenes de datos por lo que es …
The extensive growth of digital technologies has led to new challenges in terms of processing and distilling insights from data that generated continuously in real-time. To …
A Verdecia Cabrera, I Frías Blanco… - Revista Cubana de …, 2019 - scielo.sld.cu
En la actualidad, muchas fuentes generan flujos de datos ilimitados a altas tasas de entrada. Es imposible almacenar estos grandes volúmenes de datos por lo que es …
AV Cabrera, IF Blanco, AO Diaz, YR Zarabia… - Revista Cubana de …, 2019 - redalyc.org
En la actualidad, muchas fuentes generan flujos de datos ilimitados a altas tasas de entrada. Es imposible almacenar estos grandes volúmenes de datos por lo que es …