Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond

X Li, H Xiong, X Li, X Wu, X Zhang, J Liu, J Bian… - … and Information Systems, 2022 - Springer
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …

Scaling vision transformers to 22 billion parameters

M Dehghani, J Djolonga, B Mustafa… - International …, 2023 - proceedings.mlr.press
The scaling of Transformers has driven breakthrough capabilities for language models. At
present, the largest large language models (LLMs) contain upwards of 100B parameters …

Beyond neural scaling laws: beating power law scaling via data pruning

B Sorscher, R Geirhos, S Shekhar… - Advances in …, 2022 - proceedings.neurips.cc
Widely observed neural scaling laws, in which error falls off as a power of the training set
size, model size, or both, have driven substantial performance improvements in deep …

Last layer re-training is sufficient for robustness to spurious correlations

P Kirichenko, P Izmailov, AG Wilson - arXiv preprint arXiv:2204.02937, 2022 - arxiv.org
Neural network classifiers can largely rely on simple spurious features, such as
backgrounds, to make predictions. However, even in these cases, we show that they still …

Patch n'pack: Navit, a vision transformer for any aspect ratio and resolution

M Dehghani, B Mustafa, J Djolonga… - Advances in …, 2024 - proceedings.neurips.cc
The ubiquitous and demonstrably suboptimal choice of resizing images to a fixed resolution
before processing them with computer vision models has not yet been successfully …

The neuroconnectionist research programme

A Doerig, RP Sommers, K Seeliger… - Nature Reviews …, 2023 - nature.com
Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to
model behavioural and neural data, an approach we call 'neuroconnectionism'. ANNs have …

Deep problems with neural network models of human vision

JS Bowers, G Malhotra, M Dujmović… - Behavioral and Brain …, 2023 - cambridge.org
Deep neural networks (DNNs) have had extraordinary successes in classifying
photographic images of objects and are often described as the best models of biological …

Getting aligned on representational alignment

I Sucholutsky, L Muttenthaler, A Weller, A Peng… - arXiv preprint arXiv …, 2023 - arxiv.org
Biological and artificial information processing systems form representations that they can
use to categorize, reason, plan, navigate, and make decisions. How can we measure the …

Agreement-on-the-line: Predicting the performance of neural networks under distribution shift

C Baek, Y Jiang, A Raghunathan… - Advances in Neural …, 2022 - proceedings.neurips.cc
Recently, Miller et al. showed that a model's in-distribution (ID) accuracy has a strong linear
correlation with its out-of-distribution (OOD) accuracy, on several OOD benchmarks, a …