Pervasive AI for IoT applications: A survey on resource-efficient distributed artificial intelligence

E Baccour, N Mhaisen, AA Abdellatif… - … Surveys & Tutorials, 2022 - ieeexplore.ieee.org
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of
Things (IoT) applications and services, spanning from recommendation systems and speech …

Membership inference attacks from first principles

N Carlini, S Chien, M Nasr, S Song… - … IEEE Symposium on …, 2022 - ieeexplore.ieee.org
A membership inference attack allows an adversary to query a trained machine learning
model to predict whether or not a particular example was contained in the model's training …

Deep learning on a data diet: Finding important examples early in training

M Paul, S Ganguli… - Advances in neural …, 2021 - proceedings.neurips.cc
Recent success in deep learning has partially been driven by training increasingly
overparametrized networks on ever larger datasets. It is therefore natural to ask: how much …

Model optimization techniques in personalized federated learning: A survey

F Sabah, Y Chen, Z Yang, M Azam, N Ahmad… - Expert Systems with …, 2023 - Elsevier
Personalized federated learning (PFL) is an exciting approach that allows machine learning
(ML) models to be trained on diverse and decentralized sources of data, while maintaining …

Robustbench: a standardized adversarial robustness benchmark

F Croce, M Andriushchenko, V Sehwag… - arXiv preprint arXiv …, 2020 - arxiv.org
As a research community, we are still lacking a systematic understanding of the progress on
adversarial robustness which often makes it hard to identify the most promising ideas in …

No fear of heterogeneity: Classifier calibration for federated learning with non-iid data

M Luo, F Chen, D Hu, Y Zhang… - Advances in Neural …, 2021 - proceedings.neurips.cc
A central challenge in training classification models in the real-world federated system is
learning with non-IID data. To cope with this, most of the existing works involve enforcing …

[PDF][PDF] The computational limits of deep learning

NC Thompson, K Greenewald, K Lee… - arXiv preprint arXiv …, 2020 - assets.pubpub.org
Deep learning's recent history has been one of achievement: from triumphing over humans
in the game of Go to world-leading performance in image classification, voice recognition …

Group knowledge transfer: Federated learning of large cnns at the edge

C He, M Annavaram… - Advances in Neural …, 2020 - proceedings.neurips.cc
Scaling up the convolutional neural network (CNN) size (eg, width, depth, etc.) is known to
effectively improve model accuracy. However, the large model size impedes training on …

Fedml: A research library and benchmark for federated machine learning

C He, S Li, J So, X Zeng, M Zhang, H Wang… - arXiv preprint arXiv …, 2020 - arxiv.org
Federated learning (FL) is a rapidly growing research field in machine learning. However,
existing FL libraries cannot adequately support diverse algorithmic development; …

Similarity-preserving knowledge distillation

F Tung, G Mori - Proceedings of the IEEE/CVF international …, 2019 - openaccess.thecvf.com
Abstract Knowledge distillation is a widely applicable technique for training a student neural
network under the guidance of a trained teacher network. For example, in neural network …