From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment

K Swanson, E Wu, A Zhang, AA Alizadeh, J Zou - Cell, 2023 - cell.com
Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict
patient outcomes, and inform treatment planning. Here, we review recent applications of ML …

Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

Transformer-based unsupervised contrastive learning for histopathological image classification

X Wang, S Yang, J Zhang, M Wang, J Zhang… - Medical image …, 2022 - Elsevier
A large-scale and well-annotated dataset is a key factor for the success of deep learning in
medical image analysis. However, assembling such large annotations is very challenging …

[HTML][HTML] Transparency of deep neural networks for medical image analysis: A review of interpretability methods

Z Salahuddin, HC Woodruff, A Chatterjee… - Computers in biology and …, 2022 - Elsevier
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for
diagnosis and treatment decisions. Deep neural networks have shown the same or better …

Big data analytics for intelligent manufacturing systems: A review

J Wang, C Xu, J Zhang, R Zhong - Journal of Manufacturing Systems, 2022 - Elsevier
With the development of Internet of Things (IoT), 5 G, and cloud computing technologies, the
amount of data from manufacturing systems has been increasing rapidly. With massive …

Medical image segmentation using deep learning: A survey

R Wang, T Lei, R Cui, B Zhang, H Meng… - IET image …, 2022 - Wiley Online Library
Deep learning has been widely used for medical image segmentation and a large number of
papers has been presented recording the success of deep learning in the field. A …

Improving the accuracy of medical diagnosis with causal machine learning

JG Richens, CM Lee, S Johri - Nature communications, 2020 - nature.com
Abstract Machine learning promises to revolutionize clinical decision making and diagnosis.
In medical diagnosis a doctor aims to explain a patient's symptoms by determining the …

Explaining deep neural networks and beyond: A review of methods and applications

W Samek, G Montavon, S Lapuschkin… - Proceedings of the …, 2021 - ieeexplore.ieee.org
With the broader and highly successful usage of machine learning (ML) in industry and the
sciences, there has been a growing demand for explainable artificial intelligence (XAI) …

Deep neural network models for computational histopathology: A survey

CL Srinidhi, O Ciga, AL Martel - Medical image analysis, 2021 - Elsevier
Histopathological images contain rich phenotypic information that can be used to monitor
underlying mechanisms contributing to disease progression and patient survival outcomes …

On interpretability of artificial neural networks: A survey

FL Fan, J Xiong, M Li, G Wang - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Deep learning as performed by artificial deep neural networks (DNNs) has achieved great
successes recently in many important areas that deal with text, images, videos, graphs, and …