Some one-dimensional elliptic problems with constraints

J Schino, P Smyrnelis - arXiv preprint arXiv:2410.03318, 2024 - arxiv.org
Given $ m\in\mathbb {N}\setminus\{0\} $ and $\rho> 0$, we find solutions $(\lambda, u) $ to
the problem\begin {equation*}\begin {cases}\bigl (-\frac {\mathrm {d}^ 2}{\mathrm {d} x …

Normalized solutions for nonlinear Schr\"odinger equations with -critical nonlinearity

S Cingolani, M Gallo, N Ikoma, K Tanaka - arXiv preprint arXiv:2410.23733, 2024 - arxiv.org
We study the following nonlinear Schr\" odinger equation and we look for normalized
solutions $(u,\mu)\in H^ 1 ({\bf R}^ N)\times {\bf R} $ for a given $ m> 0$ and $ N\geq 2 …

Existence and multiplicity of normalized solutions for -Laplacian equations with the mixed nonlinearities

R Ding, C Ji, P Pucci - arXiv preprint arXiv:2410.15066, 2024 - arxiv.org
In this paper, we study the existence of normalized solutions for the following $(2, q) $-
Laplacian equation\begin {equation*}\label {Eq-Equation1}\left\{\begin {array}{l}-\Delta u …

Existence of normalized solutions to Choquard equation with general mixed nonlinearities

M Zhu, X Li - Complex Variables and Elliptic Equations, 2024 - Taylor & Francis
We study the existence of normalized solutions to the following Choquard equation with F
being a Berestycki-Lions type function {− Δ u+ λu=(I α∗ F (u)) f (u), in RN,∫ RN| u| 2 dx= ρ 2 …