Tensor networks for -spin models

B Lanthier, J Côté, S Kourtis - Frontiers in Physics, 2024 - frontiersin.org
We introduce a tensor network algorithm for the solution of p-spin models. We show that
bond compression through rank-revealing decompositions performed during the tensor …

Thermodynamic Algorithms for Quadratic Programming

PL Bartosik, K Donatella, M Aifer, D Melanson… - arXiv preprint arXiv …, 2024 - arxiv.org
Thermodynamic computing has emerged as a promising paradigm for accelerating
computation by harnessing the thermalization properties of physical systems. This work …

Noise-augmented chaotic Ising machines for combinatorial optimization and sampling

K Lee, S Chowdhury, KY Camsari - Communications Physics, 2025 - nature.com
Ising machines are hardware accelerators for combinatorial optimization and probabilistic
sampling, using stochasticity to explore spin configurations and avoid local minima. We …

Direct design of ground-state probabilistic logic using many-body interactions for probabilistic computing

Y He, S Luo, C Fang, G Liang - Scientific reports, 2024 - nature.com
In this work, an innovative design model aimed at enhancing the efficacy of ground-state
probabilistic logic with a binary energy landscape (GSPL-BEL) is presented. This model …

SUANPAN: Scalable Photonic Linear Vector Machine

Z Yang, C Li, Y Ran, Y Li, X Feng, K Cui, F Liu… - arXiv preprint arXiv …, 2024 - arxiv.org
Photonic linear operation is a promising approach to handle the extensive vector
multiplications in artificial intelligence techniques due to the natural bosonic parallelism and …

[PDF][PDF] Optimisation de la résolution des modèles p-spin avec les réseaux de tenseurs

B Lanthier - savoirs.usherbrooke.ca
Résumé Ce mémoire a pour objectif d'introduire un algorithme basé sur les réseaux de
tenseurs pour la résolution des modèles p-spin, une classe importante de modèles en …