A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

A comprehensive survey of forgetting in deep learning beyond continual learning

Z Wang, E Yang, L Shen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Forgetting refers to the loss or deterioration of previously acquired knowledge. While
existing surveys on forgetting have primarily focused on continual learning, forgetting is a …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arXiv preprint arXiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Class-incremental learning: A survey

DW Zhou, QW Wang, ZH Qi, HJ Ye… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …

A theoretical study on solving continual learning

G Kim, C Xiao, T Konishi, Z Ke… - Advances in neural …, 2022 - proceedings.neurips.cc
Continual learning (CL) learns a sequence of tasks incrementally. There are two popular CL
settings, class incremental learning (CIL) and task incremental learning (TIL). A major …

Pcr: Proxy-based contrastive replay for online class-incremental continual learning

H Lin, B Zhang, S Feng, X Li… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Online class-incremental continual learning is a specific task of continual learning. It aims to
continuously learn new classes from data stream and the samples of data stream are seen …

Online prototype learning for online continual learning

Y Wei, J Ye, Z Huang, J Zhang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Online continual learning (CL) studies the problem of learning continuously from a single-
pass data stream while adapting to new data and mitigating catastrophic forgetting …

A comprehensive empirical evaluation on online continual learning

A Soutif-Cormerais, A Carta, A Cossu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Online continual learning aims to get closer to a live learning experience by learning directly
on a stream of data with temporally shifting distribution and by storing a minimum amount of …

Learnability and algorithm for continual learning

G Kim, C Xiao, T Konishi, B Liu - … Conference on Machine …, 2023 - proceedings.mlr.press
This paper studies the challenging continual learning (CL) setting of Class Incremental
Learning (CIL). CIL learns a sequence of tasks consisting of disjoint sets of concepts or …

Self-evolved dynamic expansion model for task-free continual learning

F Ye, AG Bors - Proceedings of the IEEE/CVF International …, 2023 - openaccess.thecvf.com
Abstract Task-Free Continual Learning (TFCL) aims to learn new concepts from a stream of
data without any task information. The Dynamic Expansion Model (DEM) has shown …