Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022)

HW Loh, CP Ooi, S Seoni, PD Barua, F Molinari… - Computer Methods and …, 2022 - Elsevier
Background and objectives Artificial intelligence (AI) has branched out to various
applications in healthcare, such as health services management, predictive medicine …

A review of the role of artificial intelligence in healthcare

A Al Kuwaiti, K Nazer, A Al-Reedy, S Al-Shehri… - Journal of personalized …, 2023 - mdpi.com
Artificial intelligence (AI) applications have transformed healthcare. This study is based on a
general literature review uncovering the role of AI in healthcare and focuses on the following …

Capabilities of gpt-4 on medical challenge problems

H Nori, N King, SM McKinney, D Carignan… - arXiv preprint arXiv …, 2023 - arxiv.org
Large language models (LLMs) have demonstrated remarkable capabilities in natural
language understanding and generation across various domains, including medicine. We …

Shifting machine learning for healthcare from development to deployment and from models to data

A Zhang, L Xing, J Zou, JC Wu - Nature Biomedical Engineering, 2022 - nature.com
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …

Interpretable machine learning for knowledge generation in heterogeneous catalysis

JA Esterhuizen, BR Goldsmith, S Linic - Nature catalysis, 2022 - nature.com
Most applications of machine learning in heterogeneous catalysis thus far have used black-
box models to predict computable physical properties (descriptors), such as adsorption or …

Explanations can reduce overreliance on ai systems during decision-making

H Vasconcelos, M Jörke… - Proceedings of the …, 2023 - dl.acm.org
Prior work has identified a resilient phenomenon that threatens the performance of human-
AI decision-making teams: overreliance, when people agree with an AI, even when it is …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

[HTML][HTML] Opening the black box: the promise and limitations of explainable machine learning in cardiology

J Petch, S Di, W Nelson - Canadian Journal of Cardiology, 2022 - Elsevier
Many clinicians remain wary of machine learning because of longstanding concerns about
“black box” models.“Black box” is shorthand for models that are sufficiently complex that they …

Openxai: Towards a transparent evaluation of model explanations

C Agarwal, S Krishna, E Saxena… - Advances in neural …, 2022 - proceedings.neurips.cc
While several types of post hoc explanation methods have been proposed in recent
literature, there is very little work on systematically benchmarking these methods. Here, we …

[HTML][HTML] Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions

L Longo, M Brcic, F Cabitza, J Choi, R Confalonieri… - Information …, 2024 - Elsevier
Understanding black box models has become paramount as systems based on opaque
Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response …