Representations of p-adic groups over commutative rings

MF Vignéras - Prize LectureS, 2022 - ems.press
Motivated by the Langlands program in representation theory, number theory, and geometry,
the theory of representations of a reductive p-adic group, originally in complex vector …

Tate Cohomology of Whittaker Lattices and Base Change of Generic Representations of GLn

S Nadimpalli, S Dhar - International Mathematics Research …, 2024 - academic.oup.com
Let and be two distinct odd primes, and let be a positive integer. Let be a finite Galois
extension of degree of a-adic field. Let be the cardinality of the residue field of. Let be an …

THE-MODULAR LOCAL LANGLANDS CORRESPONDENCE AND LOCAL CONSTANTS

R Kurinczuk, N Matringe - Journal of the Institute of Mathematics of …, 2021 - cambridge.org
THE l-MODULAR LOCAL LANGLANDS CORRESPONDENCE AND LOCAL CONSTANTS
Page 1 J. Inst. Math. Jussieu (2021) 20(5), 1585–1635 doi:10.1017/S1474748019000586 c …

The Kirillov model in families

N Matringe, G Moss - Monatshefte für Mathematik, 2022 - Springer
Let F be a non archimedean local field, let k be an algebraically closed field of characteristic
ℓ different from the residual characteristic of F, and let A be a commutative Noetherian W (k) …

Gamma factors of pairs and a local converse theorem in families

G Moss - International Mathematics Research Notices, 2016 - academic.oup.com
We prove a local converse theorem for-adic families of smooth representations of where is a
finite extension of and. Along the way, we extend the theory of Rankin–Selberg integrals …

Tate cohomology of Whittaker lattices and Base change of cuspidal representations of

S Dhar, S Nadimpalli - arXiv preprint arXiv:2204.02131, 2022 - arxiv.org
Let $ p $ and $ l $ be distinct primes and let $ n $ be a positive integer. Let $ E $ be a finite
Galois extension of degree $ l $ of a $ p $-adic field $ F $. Let $\pi $ and $\rho $ be two $ l …

Interpolating local constants in families

G Moss - arXiv preprint arXiv:1403.3914, 2014 - arxiv.org
We extend the theory of local constants to l-adic families of representations of GL_n (F)
where F is a p-adic field with l not equal to p. We construct zeta integrals and gamma factors …

Characterisation of the poles of the l-modular Asai L-factor

R Kurinczuk, N Matringe - Bull. Soc. Math. France, 2020 - smf.emath.fr
Let F/Fo be a quadratic extension of non-archimedean local fields of odd residual
characteristic, set G= GLn (F), Go= GLn (Fo) and let l be a prime number different from the …

On modular representations of inner forms of over a local non-archimedean field

J Droschl - arXiv preprint arXiv:2402.13969, 2024 - arxiv.org
Let $\mathrm {F} $ be a local non-archimedean field of residue characteristic $ p $ and
$\overline {\mathbb {F}} _\ell $ an algebraic closure of a finite field of characteristic $\ell\neq …

Test vectors for local cuspidal Rankin–Selberg integrals

R Kurinczuk, N Matringe - Nagoya Mathematical Journal, 2019 - cambridge.org
Abstract Let $\unicode [STIX]{x1D70B} _ {1},\unicode [STIX]{x1D70B} _ {2} $ be a pair of
cuspidal complex, or $\ell $-adic, representations of the general linear group of rank $ n …