Power-partible reduction and congruences for Schröder polynomials

CB Jia, RH Wang, MXX Zhong - Revista de la Real Academia de Ciencias …, 2024 - Springer
In this paper, we apply the power-partible reduction to show the following arithmetic
properties of large Schröder polynomials S n (z) and little Schröder polynomials sn (z): for …

Rational reductions for holonomic sequences

RH Wang - Journal of Systems Science and Complexity, 2024 - Springer
Given a holonomic sequence F (n), the author characterizes rational functions r (n) so that r
(n) F (n) can be summable. The author provides upper and lower bounds on the degree of …

Power-Partible Reduction and Congruences

RH Wang, MXX Zhong - arXiv preprint arXiv:2301.01985, 2023 - arxiv.org
Based on the polynomial reduction, a holonomic (or, P-recursive) sequence $ F (k) $ can be
decomposed into a summable part and a reduced part. In this paper, we show that when $ F …

Power-partible Reduction and Congruences for Schr\" oder Polynomials

CB Jia, RH Wang, MXX Zhong - arXiv preprint arXiv:2310.06314, 2023 - arxiv.org
In this note, we apply the power-partible reduction to show the following arithmetic
properties of large Schr\" oder polynomials $ S_n (z) $ and little Schr\" oder polynomials …

Congruences involving Delannoy numbers and Schr\" oder numbers

CB Jia, JQ Huang - arXiv preprint arXiv:2410.17522, 2024 - arxiv.org
The central Delannoy numbers $ D_n=\sum_ {k= 0}^{n}\binom {n}{k}\binom {n+ k}{k} $ and
the little Schr\" oder number $ s_n=\sum_ {k= 1}^{n}\frac {1}{n}\binom {n}{k}\binom {n}{k-1} …

[PDF][PDF] Two Applications of the Telescoping Method

QH Hou, GJ Li, N Li, K Liu - 2023 - mathexp.eu
Two Applications of the Telescoping Method Page 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Two Applications of the Telescoping Method Qing-Hu Hou School of Mathematics, Tianjin …

[引用][C] Power-partible reduction and congruences for Apéry numbers

RH Wang, MXX Zhong - International Journal of Number Theory, 2024 - World Scientific
In this paper, we introduce the power-partible reduction for holonomic (or, P-recursive)
sequences and apply it to obtain a series of congruences for Apéry numbers A k. In …