Artificial intelligence to deep learning: machine intelligence approach for drug discovery

R Gupta, D Srivastava, M Sahu, S Tiwari, RK Ambasta… - Molecular …, 2021 - Springer
Drug designing and development is an important area of research for pharmaceutical
companies and chemical scientists. However, low efficacy, off-target delivery, time …

Geometric deep learning on molecular representations

K Atz, F Grisoni, G Schneider - Nature Machine Intelligence, 2021 - nature.com
Geometric deep learning (GDL) is based on neural network architectures that incorporate
and process symmetry information. GDL bears promise for molecular modelling applications …

Equibind: Geometric deep learning for drug binding structure prediction

H Stärk, O Ganea, L Pattanaik… - International …, 2022 - proceedings.mlr.press
Predicting how a drug-like molecule binds to a specific protein target is a core problem in
drug discovery. An extremely fast computational binding method would enable key …

Tankbind: Trigonometry-aware neural networks for drug-protein binding structure prediction

W Lu, Q Wu, J Zhang, J Rao, C Li… - Advances in neural …, 2022 - proceedings.neurips.cc
Illuminating interactions between proteins and small drug molecules is a long-standing
challenge in the field of drug discovery. Despite the importance of understanding these …

Artificial intelligence for drug discovery: Resources, methods, and applications

W Chen, X Liu, S Zhang, S Chen - Molecular Therapy-Nucleic Acids, 2023 - cell.com
Conventional wet laboratory testing, validations, and synthetic procedures are costly and
time-consuming for drug discovery. Advancements in artificial intelligence (AI) techniques …

TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches

W Xin, W Zi-Yi, JH Zheng, LI Shao - Chinese journal of natural medicines, 2021 - Elsevier
Traditional Chinese medicine (TCM) is a precious treasure of the Chinese nation and has
unique advantages in the prevention and treatment of diseases. The holistic view of TCM …

AI in drug discovery and its clinical relevance

R Qureshi, M Irfan, TM Gondal, S Khan, J Wu, MU Hadi… - Heliyon, 2023 - cell.com
The COVID-19 pandemic has emphasized the need for novel drug discovery process.
However, the journey from conceptualizing a drug to its eventual implementation in clinical …

Machine-learning methods for ligand–protein molecular docking

K Crampon, A Giorkallos, M Deldossi, S Baud… - Drug discovery today, 2022 - Elsevier
Artificial intelligence (AI) is often presented as a new Industrial Revolution. Many domains
use AI, including molecular simulation for drug discovery. In this review, we provide an …

Sequence-based drug design as a concept in computational drug design

L Chen, Z Fan, J Chang, R Yang, H Hou, H Guo… - Nature …, 2023 - nature.com
Drug development based on target proteins has been a successful approach in recent
decades. However, the conventional structure-based drug design (SBDD) pipeline is a …

Artificial intelligence in drug discovery and development

KK Mak, YH Wong, MR Pichika - Drug discovery and evaluation: safety …, 2024 - Springer
This chapter comprehensively explores the pivotal role of artificial intelligence (AI) in drug
discovery and development, encapsulating its potentials, methodologies, real-world …