Application of artificial intelligence in wearable devices: Opportunities and challenges

D Nahavandi, R Alizadehsani, A Khosravi… - Computer Methods and …, 2022 - Elsevier
Background and objectives: Wearable technologies have added completely new and fast
emerging tools to the popular field of personal gadgets. Aside from being fashionable and …

[HTML][HTML] Epileptic seizures detection using deep learning techniques: a review

A Shoeibi, M Khodatars, N Ghassemi, M Jafari… - International journal of …, 2021 - mdpi.com
A variety of screening approaches have been proposed to diagnose epileptic seizures,
using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities …

The internet of medical things and artificial intelligence: trends, challenges, and opportunities

K Kakhi, R Alizadehsani, HMD Kabir, A Khosravi… - Biocybernetics and …, 2022 - Elsevier
High quality and efficient medical service is one of the major factors defining living
standards. Developed countries strive to make their healthcare systems as efficient and cost …

Emotion recognition in EEG signals using deep learning methods: A review

M Jafari, A Shoeibi, M Khodatars… - Computers in Biology …, 2023 - Elsevier
Emotions are a critical aspect of daily life and serve a crucial role in human decision-making,
planning, reasoning, and other mental states. As a result, they are considered a significant …

Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

A Shoeibi, M Khodatars, M Jafari, N Ghassemi… - Information …, 2023 - Elsevier
Brain diseases, including tumors and mental and neurological disorders, seriously threaten
the health and well-being of millions of people worldwide. Structural and functional …

Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review

A Shoeibi, M Khodatars, M Jafari, P Moridian… - Computers in Biology …, 2021 - Elsevier
Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor
problems for people with a detrimental effect on the functioning of the nervous system. In …

Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review

M Khodatars, A Shoeibi, D Sadeghi… - Computers in biology …, 2021 - Elsevier
Abstract Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective
rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) …

Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images

D Sharifrazi, R Alizadehsani, M Roshanzamir… - … Signal Processing and …, 2021 - Elsevier
Abstract The coronavirus (COVID-19) is currently the most common contagious disease
which is prevalent all over the world. The main challenge of this disease is the primary …

Deep learning models-based CT-scan image classification for automated screening of COVID-19

K Gupta, V Bajaj - Biomedical Signal Processing and Control, 2023 - Elsevier
COVID-19 is the most transmissible disease, caused by the SARS-CoV-2 virus that severely
infects the lungs and the upper respiratory tract of the human body. This virus badly affected …

Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies

A Shoeibi, N Ghassemi, M Khodatars… - … Signal Processing and …, 2022 - Elsevier
Epileptic seizures are one of the most crucial neurological disorders, and their early
diagnosis will help the clinicians to provide accurate treatment for the patients. The …