Quantum-classical correspondence for a non-Hermitian Bose-Hubbard dimer

EM Graefe, HJ Korsch, AE Niederle - Physical Review A—Atomic, Molecular …, 2010 - APS
We investigate the many-particle and mean-field correspondence for a non-Hermitian N-
particle Bose-Hubbard dimer where a complex on-site energy describes an effective decay …

Quadratic, homogeneous, and Kolmogorov vector fields on S1× S2 and S2× S1

S Jana, S Sarkar - Journal of Differential Equations, 2025 - Elsevier
In this paper, we consider the following algebraic hypersurfaces S 1× S 2={(x 1, x 2, x 3, x
4)∈ R 4:(x 1 2+ x 2 2− a 2) 2+ x 3 2+ x 4 2− 1= 0 and a> 1} and S 2× S 1={(x 1, x 2, x 3, x …

The dynamics of an open Bose–Hubbard dimer with effective asymmetric coupling

J Pi, F Chen, Q Liu, L You, R Lü - The European Physical Journal B, 2024 - Springer
We investigate an open Bose–Hubbard dimer with a non-Hermitian term represents an
asymmetric coupling between the two sites. By mapping to the collective angular moment …

Quadratic, Homogeneous and Kolmogorov vector fields on and

S Jana, S Sarkar - arXiv preprint arXiv:2307.09439, 2023 - arxiv.org
In this paper, we consider the following two algebraic hypersurfaces $$ S^ 1\times S^
2=\{(x_1, x_2, x_3, x_4)\in\mathbb {R}^ 4:(x_1^ 2+ x_2^ 2-a^ 2)^ 2+ x_3^ 2+ x_4^ 2-1= 0; …

Kovalevskaya exponents, weak Painlevé property and integrability for quasi-homogeneous differential systems

K Huang, S Shi, W Li - Regular and Chaotic Dynamics, 2020 - Springer
We present some necessary conditions for quasi-homogeneous differential systems to be
completely integrable via Kovalevskaya exponents. Then, as an application, we give a new …

Phase portraits for quadratic homogeneous polynomial vector fields on

J Llibre, C Pessoa - Rendiconti del Circolo Matematico di Palermo, 2009 - Springer
Let X be a homogeneous polynomial vector field of degree 2 on S^ 2. We show that if X has
at least a non-hyperbolic singularity, then it has no limit cycles. We give necessary and …

Darboux theory of integrability for real polynomial vector fields on the dimensional ellipsoid

J Llibre, AC Murza - arXiv preprint arXiv:2410.21336, 2024 - arxiv.org
We extend to the $ n $-dimensional ellipsoid contained in $\R^{n+ 1}, $ the Darboux theory
of integrability for polynomial vector fields in the $ n $-dimensional sphere (Llibre et al …

Dynamics and integrability of polynomial vector fields on the -dimensional sphere

S Jana, S Sarkar - arXiv preprint arXiv:2412.02190, 2024 - arxiv.org
In this paper, we characterize arbitrary polynomial vector fields on $ S^ n $. We establish a
necessary and sufficient condition for a degree one vector field on the odd-dimensional …

Invariant circles and phase portraits of cubic vector fields on the sphere

J Benny, S Jana, S Sarkar - Qualitative Theory of Dynamical Systems, 2024 - Springer
In this paper, we characterize and study dynamical properties of cubic vector fields on the
sphere S 2={(x, y, z)∈ R 3| x 2+ y 2+ z 2= 1}. We start by classifying all degree three …

A class of reversible quadratic polynomial vector fields on S2

WF Pereira, C Pessoa - Journal of mathematical analysis and applications, 2010 - Elsevier
A class of reversible quadratic polynomial vector fields on S2 Page 1 J. Math. Anal. Appl. 371
(2010) 203–209 Contents lists available at ScienceDirect Journal of Mathematical Analysis …