Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles

L Liu, A Corma - Chemical Reviews, 2023 - ACS Publications
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but
achieving a fundamental understanding on the nature of the active sites in bimetallic …

Microenvironment engineering of single/dual‐atom catalysts for electrocatalytic application

Y Gao, B Liu, D Wang - Advanced Materials, 2023 - Wiley Online Library
Single/dual‐metal atoms supported on carbon matrix can be modulated by coordination
structure and neighboring active sites. Precisely designing the geometric and electronic …

High Durability of Fe–N–C Single‐Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media

H Tian, A Song, P Zhang, K Sun, J Wang… - Advanced …, 2023 - Wiley Online Library
Single‐atom catalysts (SACs) have attracted extensive interest to catalyze the oxygen
reduction reaction (ORR) in fuel cells and metal–air batteries. However, the development of …

High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells

A Mehmood, M Gong, F Jaouen, A Roy, A Zitolo… - Nature Catalysis, 2022 - nature.com
Non-precious iron-based catalysts (Fe–NCs) require high active site density to meet the
performance targets as cathode catalysts in proton exchange membrane fuel cells. Site …

Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts

Y Zeng, C Li, B Li, J Liang, MJ Zachman, DA Cullen… - Nature Catalysis, 2023 - nature.com
Fe–N–C catalysts are the most promising platinum group metal-free oxygen-reduction
catalysts, but they suffer from a low density of active metal sites and the so-called activity …

Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells

X Wan, Q Liu, J Liu, S Liu, X Liu, L Zheng… - Nature …, 2022 - nature.com
Simultaneously increasing the activity and stability of the single-atom active sites of M–N–C
catalysts is critical but remains a great challenge. Here, we report an Fe–N–C catalyst with …

Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis

X Zheng, B Li, Q Wang, D Wang, Y Li - Nano research, 2022 - Springer
Supported atomically dispersed metal catalysts (ADMCs) have received enormous attention
due to their high atom utilization efficiency, mass activity and excellent selectivity. Single …

Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction

X Zheng, J Yang, Z Xu, Q Wang, J Wu… - Angewandte Chemie …, 2022 - Wiley Online Library
Manipulating the coordination environment of the active center via anion modulation to
reveal tailored activity and selectivity has been widely achieved, especially for carbon …

Atomically dispersed Fe–Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn–air batteries

Y He, X Yang, Y Li, L Liu, S Guo, C Shu, F Liu… - ACS …, 2022 - ACS Publications
Single-metal site catalysts have exhibited highly efficient electrocatalytic properties due to
their unique coordination environments and adjustable local structures for reactant …

Proximity electronic effect of Ni/Co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution

M Li, H Zhu, Q Yuan, T Li, M Wang… - Advanced Functional …, 2023 - Wiley Online Library
The modulation effect manifests an encouraging potential to enhance the performance of
single‐atom catalysts; however, the in‐depth study about this effect for the isolated diatomic …