Optimization problems for machine learning: A survey

C Gambella, B Ghaddar, J Naoum-Sawaya - European Journal of …, 2021 - Elsevier
This paper surveys the machine learning literature and presents in an optimization
framework several commonly used machine learning approaches. Particularly …

Optimization for deep learning: An overview

RY Sun - Journal of the Operations Research Society of China, 2020 - Springer
Optimization is a critical component in deep learning. We think optimization for neural
networks is an interesting topic for theoretical research due to various reasons. First, its …

Optimization methods for large-scale machine learning

L Bottou, FE Curtis, J Nocedal - SIAM review, 2018 - SIAM
This paper provides a review and commentary on the past, present, and future of numerical
optimization algorithms in the context of machine learning applications. Through case …

Optimization for deep learning: theory and algorithms

R Sun - arXiv preprint arXiv:1912.08957, 2019 - arxiv.org
When and why can a neural network be successfully trained? This article provides an
overview of optimization algorithms and theory for training neural networks. First, we discuss …

A brief survey of machine learning and deep learning techniques for e-commerce research

X Zhang, F Guo, T Chen, L Pan, G Beliakov… - Journal of Theoretical …, 2023 - mdpi.com
The rapid growth of e-commerce has significantly increased the demand for advanced
techniques to address specific tasks in the e-commerce field. In this paper, we present a …

Bayesian optimization for calibrating and selecting hybrid-density functional models

RA Vargas− Hernández - The Journal of Physical Chemistry A, 2020 - ACS Publications
The accuracy of some density functional (DF) models widely used in material science
depends on empirical or free parameters that are commonly tuned using reference physical …

Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence

N Baker, F Alexander, T Bremer, A Hagberg… - 2019 - osti.gov
Scientific Machine Learning (SciML) and Artificial Intelligence (AI) will have broad use and
transformative effects across the Department of Energy. Accordingly, the January 2018 Basic …

Recent theoretical advances in non-convex optimization

M Danilova, P Dvurechensky, A Gasnikov… - … and Probability: With a …, 2022 - Springer
Motivated by recent increased interest in optimization algorithms for non-convex
optimization in application to training deep neural networks and other optimization problems …

When deep learning meets polyhedral theory: A survey

J Huchette, G Muñoz, T Serra, C Tsay - arXiv preprint arXiv:2305.00241, 2023 - arxiv.org
In the past decade, deep learning became the prevalent methodology for predictive
modeling thanks to the remarkable accuracy of deep neural networks in tasks such as …

Machine learning in absorption-based post-combustion carbon capture systems: A state-of-the-art review

M Hosseinpour, MJ Shojaei, M Salimi, M Amidpour - Fuel, 2023 - Elsevier
The enormous consumption of fossil fuels from various human activities leads to a significant
amount of anthropogenic CO 2 emission into the atmosphere, which has already massively …