Turbulence modeling in the age of data

K Duraisamy, G Iaccarino, H Xiao - Annual review of fluid …, 2019 - annualreviews.org
Data from experiments and direct simulations of turbulence have historically been used to
calibrate simple engineering models such as those based on the Reynolds-averaged Navier …

A review of physics-informed machine learning in fluid mechanics

P Sharma, WT Chung, B Akoush, M Ihme - Energies, 2023 - mdpi.com
Physics-informed machine-learning (PIML) enables the integration of domain knowledge
with machine learning (ML) algorithms, which results in higher data efficiency and more …

Explainable machine learning for scientific insights and discoveries

R Roscher, B Bohn, MF Duarte, J Garcke - Ieee Access, 2020 - ieeexplore.ieee.org
Machine learning methods have been remarkably successful for a wide range of application
areas in the extraction of essential information from data. An exciting and relatively recent …

Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data

L Sun, H Gao, S Pan, JX Wang - Computer Methods in Applied Mechanics …, 2020 - Elsevier
Numerical simulations on fluid dynamics problems primarily rely on spatially or/and
temporally discretization of the governing equation using polynomials into a finite …

Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

J Ling, A Kurzawski, J Templeton - Journal of Fluid Mechanics, 2016 - cambridge.org
There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS)
turbulence models that are informed by and can represent a richer set of turbulence physics …

Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework

JL Wu, H Xiao, E Paterson - Physical Review Fluids, 2018 - APS
Reynolds-averaged Navier-Stokes (RANS) equations are widely used in engineering
turbulent flow simulations. However, RANS predictions may have large discrepancies due to …

Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence

K Duraisamy - Physical Review Fluids, 2021 - APS
This work presents a review and perspectives on recent developments in the use of machine
learning (ML) to augment Reynolds-averaged Navier-Stokes (RANS) and large eddy …

Neural networks meet hyperelasticity: A guide to enforcing physics

L Linden, DK Klein, KA Kalina, J Brummund… - Journal of the …, 2023 - Elsevier
In the present work, a hyperelastic constitutive model based on neural networks is proposed
which fulfills all common constitutive conditions by construction, and in particular, is …

Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus

R Rai, CK Sahu - IEEe Access, 2020 - ieeexplore.ieee.org
A multitude of cyber-physical system (CPS) applications, including design, control,
diagnosis, prognostics, and a host of other problems, are predicated on the assumption of …

Quantification of model uncertainty in RANS simulations: A review

H Xiao, P Cinnella - Progress in Aerospace Sciences, 2019 - Elsevier
In computational fluid dynamics simulations of industrial flows, models based on the
Reynolds-averaged Navier–Stokes (RANS) equations are expected to play an important …