Explainable uncertainty-aware convolutional recurrent neural network for irregular medical time series

Q Tan, M Ye, AJ Ma, B Yang, TCF Yip… - … on Neural Networks …, 2020 - ieeexplore.ieee.org
Influenced by the dynamic changes in the severity of illness, patients usually take
examinations in hospitals irregularly, producing a large volume of irregular medical time …

UA-CRNN: Uncertainty-aware convolutional recurrent neural network for mortality risk prediction

Q Tan, AJ Ma, M Ye, B Yang, H Deng… - Proceedings of the 28th …, 2019 - dl.acm.org
Accurate prediction of mortality risk is important for evaluating early treatments, detecting
high-risk patients and improving healthcare outcomes. Predicting mortality risk from the …

Intertwining wavelets or multiresolution analysis on graphs through random forests

L Avena, F Castell, A Gaudillière, C Mélot - Applied and Computational …, 2020 - Elsevier
We propose a new method for performing multiscale analysis of functions defined on the
vertices of a finite connected weighted graph. Our approach relies on a random spanning …

Globally induced forest: A prepruning compression scheme

JM Begon, A Joly, P Geurts - International conference on …, 2017 - proceedings.mlr.press
Tree-based ensemble models are heavy memory-wise. An undesired state of affairs
considering nowadays datasets, memory-constrained environment and fitting/prediction …

Haar-Like Wavelets on Hierarchical Trees

R Archibald, B Whitney - Journal of Scientific Computing, 2024 - Springer
Discrete wavelet methods, originally formulated in the setting of regularly sampled signals,
can be adapted to data defined on a point cloud if some multiresolution structure is imposed …

Sparsity-probe: Analysis tool for deep learning models

I Ben-Shaul, S Dekel - arXiv preprint arXiv:2105.06849, 2021 - arxiv.org
We propose a probe for the analysis of deep learning architectures that is based on machine
learning and approximation theoretical principles. Given a deep learning architecture and a …

Random decision dag: An entropy based compression approach for random forest

X Liu, X Liu, Y Lai, F Yang, Y Zeng - International Conference on Database …, 2019 - Springer
Tree ensembles, such as Random Forest (RF), are popular methods in machine learning
because of their efficiency and superior performance. However, they always grow big trees …

[HTML][HTML] Алгоритм бинарной классификации на основе графов принятия решений в задачах кредитного скоринга

АН Кисляков - Модели, системы, сети в экономике, технике …, 2021 - cyberleninka.ru
Актуальность и цели. Рассмотрена актуальная проблема построения графов принятия
решений оптимальной структуры, которые используются для решения задач бинарной …

Wavelet decomposition of gradient boosting

S Dekel, O Elisha, O Morgan - arXiv preprint arXiv:1805.02642, 2018 - arxiv.org
In this paper we introduce a significant improvement to the popular tree-based Stochastic
Gradient Boosting algorithm using a wavelet decomposition of the trees. This approach is …

Function space analysis of deep learning representation layers

O Elisha, S Dekel - arXiv preprint arXiv:1710.03263, 2017 - arxiv.org
In this paper we propose a function space approach to Representation Learning and the
analysis of the representation layers in deep learning architectures. We show how to …