Local problems on trees from the perspectives of distributed algorithms, finitary factors, and descriptive combinatorics

S Brandt, YJ Chang, J Grebík, C Grunau… - arXiv preprint arXiv …, 2021 - arxiv.org
We study connections between distributed local algorithms, finitary factors of iid processes,
and descriptive combinatorics in the context of regular trees. We extend the Borel …

[PDF][PDF] Descriptive graph combinatorics

AS Kechris, AS Marks - preprint, 2016 - math.berkeley.edu
In this article we survey the emerging field of descriptive graph combinatorics. This area has
developed in the last two decades or so at the interface of descriptive set theory and graph …

Divisibility of spheres with measurable pieces

CT Conley, J Grebík, O Pikhurko - L'Enseignement Mathématique, 2024 - ems.press
For an r-tuple. 1;:::; r/of special orthogonal dd matrices, we say that the Euclidean. d 1/-
dimensional sphere Sd1 is. 1;:::; r/-divisible if there is a subset A Â Sd1 such that its …

Divisibility of spheres with measurable pieces

CT Conley, J Grebík, O Pikhurko - arXiv preprint arXiv:2012.07567, 2020 - arxiv.org
For an $ r $-tuple $(\gamma_1,\ldots,\gamma_r) $ of special orthogonal $ d\times d $
matrices, we say that the Euclidean $(d-1) $-dimensional sphere $ S^{d-1} $ is …

Measurable Regular Subgraphs

M Bowen, CT Conley, F Weilacher - arXiv preprint arXiv:2408.09597, 2024 - arxiv.org
We show that every $ d $-regular bipartite Borel graph admits a Baire measurable $ k $-
regular spanning subgraph if and only if $ d $ is odd or $ k $ is even. This gives the first …

[PDF][PDF] Definable combinatorics in descriptive set theory, computability theory, and beyond

F Weilacher - 2024 - kilthub.cmu.edu
This thesis is about finding solutions to combinatorial problems on graphs such as proper
coloring or perfect matching in the presence of extra definability constraints. For example …

A Cantor--Bendixson dichotomy of domatic partitions

E Hou - arXiv preprint arXiv:2205.05751, 2022 - arxiv.org
Let $\Gamma=\prod_ {i\in\mathbb {N}}\Gamma_i $ be an infinite product of nontrivial finite
groups, or let $\Gamma=(\mathbb {R}/\mathbb {Z})^ n $ be a finite-dimensional torus. For a …