AM Raigorodskii - Fundamenta Informaticae, 2016 - content.iospress.com
In this paper, we overview three closely related problems: Nelson–Hadwiger problem on coloring spaces with forbidden monochromatics distances; Borsuk's problem on partitioning …
Abstract Let χ (S rn− 1)) be the minimum number of colours needed to colour the points of a sphere S rn− 1 of radius r\geqslant 1 2 in ℝ n so that any two points at the distance 1 apart …
This paper is devoted to the study of the graph sequence G n=(V n, E n), where V n is the set of all vectors v∈ R n with coordinates in {− 1, 0, 1} such that| v|= 3 and E n consists of all …
This note relates to bounds on the chromatic number χ(R^n) of the Euclidean space, which is the minimum number of colors needed to color all the points in R^n so that any two points …
On the chromatic number of an infinitesimal plane layer Page 1 Algebra i analiz St. Petersburg Math. J. Tom 29 (2017), 5 Vol. 29 (2018), No. 5, Pages 761–775 https://doi.org/10.1090/spmj/1515 …
ЛИ Боголюбский, АМ Райгородский - Математические заметки, 2019 - mathnet.ru
В работе рассмотрен частный класс оценок, связанных с проблемой Нелсона–Эрдеша– Хадвигера. Для двух типов пространств, евклидовых и с метрикой ℓ1, мы …
LI Bogolyubsky, AM Raigorodskii - Mathematical Notes, 2019 - Springer
A particular class of estimates related to the Nelson–Erdős–Hadwiger problem is studied. For two types of spaces, Euclidean and spaces with metric ℓ 1, certain series of distance …
AV Bobu, AE Kupriyanov, AM Raigorodskii - Mathematical Notes, 2020 - Springer
Graphs which are analogs of Kneser graphs are studied. The problem of determining the chromatic numbers of these graphs is considered. It is shown that their structure is similar to …