Coloring distance graphs and graphs of diameters

AM Raigorodskii - Thirty essays on geometric graph theory, 2013 - Springer
In this chapter, we discuss two classical problems lying on the edge of graph theory and
combinatorial geometry. The first problem is due to E. Nelson. It consists of coloring metric …

Combinatorial geometry and coding theory

AM Raigorodskii - Fundamenta Informaticae, 2016 - content.iospress.com
In this paper, we overview three closely related problems: Nelson–Hadwiger problem on
coloring spaces with forbidden monochromatics distances; Borsuk's problem on partitioning …

On the chromatic numbers of spheres in ℝn

AM Raigorodskii - Combinatorica, 2012 - Springer
Abstract Let χ (S rn− 1)) be the minimum number of colours needed to colour the points of a
sphere S rn− 1 of radius r\geqslant 1 2 in ℝ n so that any two points at the distance 1 apart …

[HTML][HTML] On the chromatic numbers of small-dimensional Euclidean spaces

D Cherkashin, A Kulikov, A Raigorodskii - Discrete Applied Mathematics, 2018 - Elsevier
This paper is devoted to the study of the graph sequence G n=(V n, E n), where V n is the set
of all vectors v∈ R n with coordinates in {− 1, 0, 1} such that| v|= 3 and E n consists of all …

[PDF][PDF] Coloring Some Finite Sets in

J Balogh, A Kostochka… - Discussiones …, 2013 - bibliotekanauki.pl
This note relates to bounds on the chromatic number χ(R^n) of the Euclidean space, which
is the minimum number of colors needed to color all the points in R^n so that any two points …

О хроматических числах пространств малой размерности

ДД Черкашин, АМ Райгородский - Доклады Академии наук, 2017 - elibrary.ru
О ХРОМАТИЧЕСКИХ ЧИСЛАХ ПРОСТРАНСТВ МАЛОЙ РАЗМЕРНОСТИ КОРЗИНА
ПОИСК НАВИГАТОР СЕССИЯ КОНТАКТЫ ИНФОРМАЦИЯ О ПУБЛИКАЦИИ eLIBRARY …

On the chromatic number of an infinitesimal plane layer

A Kanel-Belov, V Voronov, D Cherkashin - St. Petersburg Mathematical …, 2018 - ams.org
On the chromatic number of an infinitesimal plane layer Page 1 Algebra i analiz St. Petersburg
Math. J. Tom 29 (2017), 5 Vol. 29 (2018), No. 5, Pages 761–775 https://doi.org/10.1090/spmj/1515 …

Замечание о нижних оценках хроматических чисел пространств малой размерности с метриками  и 

ЛИ Боголюбский, АМ Райгородский - Математические заметки, 2019 - mathnet.ru
В работе рассмотрен частный класс оценок, связанных с проблемой Нелсона–Эрдеша–
Хадвигера. Для двух типов пространств, евклидовых и с метрикой ℓ1, мы …

A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics 1 and 2

LI Bogolyubsky, AM Raigorodskii - Mathematical Notes, 2019 - Springer
A particular class of estimates related to the Nelson–Erdős–Hadwiger problem is studied.
For two types of spaces, Euclidean and spaces with metric ℓ 1, certain series of distance …

A generalization of Kneser graphs

AV Bobu, AE Kupriyanov, AM Raigorodskii - Mathematical Notes, 2020 - Springer
Graphs which are analogs of Kneser graphs are studied. The problem of determining the
chromatic numbers of these graphs is considered. It is shown that their structure is similar to …