Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things

B Ghimire, DB Rawat - IEEE Internet of Things Journal, 2022 - ieeexplore.ieee.org
Decentralized paradigm in the field of cybersecurity and machine learning (ML) for the
emerging Internet of Things (IoT) has gained a lot of attention from the government …

Federated learning for intrusion detection system: Concepts, challenges and future directions

S Agrawal, S Sarkar, O Aouedi, G Yenduri… - Computer …, 2022 - Elsevier
The rapid development of the Internet and smart devices trigger surge in network traffic
making its infrastructure more complex and heterogeneous. The predominated usage of …

Federated-learning-based anomaly detection for IoT security attacks

V Mothukuri, P Khare, RM Parizi… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is made up of billions of physical devices connected to the
Internet via networks that perform tasks independently with less human intervention. Such …

Federated deep learning for zero-day botnet attack detection in IoT-edge devices

SI Popoola, R Ande, B Adebisi, G Gui… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
Deep learning (DL) has been widely proposed for botnet attack detection in Internet of
Things (IoT) networks. However, the traditional centralized DL (CDL) method cannot be …

Federated deep learning for cyber security in the internet of things: Concepts, applications, and experimental analysis

MA Ferrag, O Friha, L Maglaras, H Janicke… - IEEE Access, 2021 - ieeexplore.ieee.org
In this article, we present a comprehensive study with an experimental analysis of federated
deep learning approaches for cyber security in the Internet of Things (IoT) applications …

[HTML][HTML] Evaluating Federated Learning for intrusion detection in Internet of Things: Review and challenges

EM Campos, PF Saura, A González-Vidal… - Computer Networks, 2022 - Elsevier
Abstract The application of Machine Learning (ML) techniques to the well-known intrusion
detection systems (IDS) is key to cope with increasingly sophisticated cybersecurity attacks …

Semisupervised federated-learning-based intrusion detection method for internet of things

R Zhao, Y Wang, Z Xue, T Ohtsuki… - IEEE Internet of …, 2022 - ieeexplore.ieee.org
Federated learning (FL) has become an increasingly popular solution for intrusion detection
to avoid data privacy leakage in Internet of Things (IoT) edge devices. Existing FL-based …

Federated learning for 6G-enabled secure communication systems: a comprehensive survey

D Sirohi, N Kumar, PS Rana, S Tanwar, R Iqbal… - Artificial Intelligence …, 2023 - Springer
Abstract Machine learning (ML) and Deep learning (DL) models are popular in many areas,
from business, medicine, industries, healthcare, transportation, smart cities, and many more …

PPSS: A privacy-preserving secure framework using blockchain-enabled federated deep learning for industrial IoTs

D Hamouda, MA Ferrag, N Benhamida… - Pervasive and Mobile …, 2023 - Elsevier
The growing reliance of industry 4.0/5.0 on emergent technologies has dramatically
increased the scope of cyber threats and data privacy issues. Recently, federated learning …

A federated learning method for network intrusion detection

Z Tang, H Hu, C Xu - Concurrency and Computation: Practice …, 2022 - Wiley Online Library
Intrusion detection is a common network security defense technology. At present, there are
many research using deep learning to realize network intrusion detection. This method has …