Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

Generative models as an emerging paradigm in the chemical sciences

DM Anstine, O Isayev - Journal of the American Chemical Society, 2023 - ACS Publications
Traditional computational approaches to design chemical species are limited by the need to
compute properties for a vast number of candidates, eg, by discriminative modeling …

Diffusiondet: Diffusion model for object detection

S Chen, P Sun, Y Song, P Luo - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
We propose DiffusionDet, a new framework that formulates object detection as a denoising
diffusion process from noisy boxes to object boxes. During the training stage, object boxes …

Diffdock: Diffusion steps, twists, and turns for molecular docking

G Corso, H Stärk, B Jing, R Barzilay… - arXiv preprint arXiv …, 2022 - arxiv.org
Predicting the binding structure of a small molecule ligand to a protein--a task known as
molecular docking--is critical to drug design. Recent deep learning methods that treat …

Dpm-solver++: Fast solver for guided sampling of diffusion probabilistic models

C Lu, Y Zhou, F Bao, J Chen, C Li, J Zhu - arXiv preprint arXiv:2211.01095, 2022 - arxiv.org
Diffusion probabilistic models (DPMs) have achieved impressive success in high-resolution
image synthesis, especially in recent large-scale text-to-image generation applications. An …

One transformer fits all distributions in multi-modal diffusion at scale

F Bao, S Nie, K Xue, C Li, S Pu… - International …, 2023 - proceedings.mlr.press
This paper proposes a unified diffusion framework (dubbed UniDiffuser) to fit all distributions
relevant to a set of multi-modal data in one model. Our key insight is–learning diffusion …

Geometric latent diffusion models for 3d molecule generation

M Xu, AS Powers, RO Dror, S Ermon… - International …, 2023 - proceedings.mlr.press
Generative models, especially diffusion models (DMs), have achieved promising results for
generating feature-rich geometries and advancing foundational science problems such as …

A survey on generative diffusion models

H Cao, C Tan, Z Gao, Y Xu, G Chen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep generative models have unlocked another profound realm of human creativity. By
capturing and generalizing patterns within data, we have entered the epoch of all …

Tabddpm: Modelling tabular data with diffusion models

A Kotelnikov, D Baranchuk… - International …, 2023 - proceedings.mlr.press
Denoising diffusion probabilistic models are becoming the leading generative modeling
paradigm for many important data modalities. Being the most prevalent in the computer …

Digress: Discrete denoising diffusion for graph generation

C Vignac, I Krawczuk, A Siraudin, B Wang… - arXiv preprint arXiv …, 2022 - arxiv.org
This work introduces DiGress, a discrete denoising diffusion model for generating graphs
with categorical node and edge attributes. Our model utilizes a discrete diffusion process …