[HTML][HTML] Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling

S Chowdhury, N Yadaiah, C Prakash… - Journal of Materials …, 2022 - Elsevier
Additive Manufacturing (AM) has revolutionized the manufacturing industry in several
directions. Laser powder bed fusion (LPBF), a powder bed fusion AM process, has been …

Defects and anomalies in powder bed fusion metal additive manufacturing

A Mostafaei, C Zhao, Y He, SR Ghiaasiaan… - Current Opinion in Solid …, 2022 - Elsevier
Metal additive manufacturing is a disruptive technology that is revolutionizing the
manufacturing industry. Despite its unrivaled capability for directly fabricating metal parts …

Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg

L Zhao, L Song, JGS Macías, Y Zhu, M Huang… - Additive …, 2022 - Elsevier
As important structural materials widely used in aerospace and automotive industries,
aluminum alloys are perfect candidates for development of laser metal additive …

[HTML][HTML] Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion

PA Rometsch, Y Zhu, X Wu, A Huang - Materials & Design, 2022 - Elsevier
Laser powder bed fusion (LPBF) is one of the major additive manufacturing techniques that
industries have adopted to produce complex metal components. The scientific and industrial …

A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: Microstructure and properties

HR Kotadia, G Gibbons, A Das, PD Howes - Additive Manufacturing, 2021 - Elsevier
Additive manufacturing (AM) of metallic alloys for structural and functional applications has
attracted significant interest in the last two decades as it brings a step change in the …

Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications

Z Zhu, Z Hu, HL Seet, T Liu, W Liao… - International Journal of …, 2023 - Elsevier
Whilst the adoption of additive manufacturing (AM) of aluminum alloys is relatively slower
compared with that of steels and titanium alloys, it has undergone a flourishing trend in the …

[HTML][HTML] 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting

NT Aboulkhair, M Simonelli, L Parry, I Ashcroft… - Progress in materials …, 2019 - Elsevier
Abstract Metal Additive Manufacturing (AM) processes, such as selective laser melting
(SLM), enable the fabrication of arbitrary 3D-structures with unprecedented degrees of …

A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion

WH Kan, LNS Chiu, CVS Lim, Y Zhu, Y Tian… - Journal of Materials …, 2022 - Springer
Laser powder bed fusion (LPBF) is an emerging additive manufacturing technique that is
currently adopted by a number of industries for its ability to directly fabricate complex near …

Mechanism of keyhole pore formation in metal additive manufacturing

L Wang, Y Zhang, HY Chia, W Yan - npj Computational Materials, 2022 - nature.com
During metal additive manufacturing, the porosity of the as-built part deteriorates the
mechanical property and even hinders the further application of metal additive …

[HTML][HTML] Heat treatment of aluminium alloys produced by laser powder bed fusion: A review

J Fiocchi, A Tuissi, CA Biffi - Materials & Design, 2021 - Elsevier
Laser powder bed fusion (LPBF) is the most widely used additive manufacturing technique
and has received increasing attention owing to the high design freedom it offers. The …