A review of cooperative multi-agent deep reinforcement learning

A Oroojlooy, D Hajinezhad - Applied Intelligence, 2023 - Springer
Abstract Deep Reinforcement Learning has made significant progress in multi-agent
systems in recent years. The aim of this review article is to provide an overview of recent …

A survey of reinforcement learning algorithms for dynamically varying environments

S Padakandla - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Reinforcement learning (RL) algorithms find applications in inventory control, recommender
systems, vehicular traffic management, cloud computing, and robotics. The real-world …

Dense reinforcement learning for safety validation of autonomous vehicles

S Feng, H Sun, X Yan, H Zhu, Z Zou, S Shen, HX Liu - Nature, 2023 - nature.com
One critical bottleneck that impedes the development and deployment of autonomous
vehicles is the prohibitively high economic and time costs required to validate their safety in …

Stable-baselines3: Reliable reinforcement learning implementations

A Raffin, A Hill, A Gleave, A Kanervisto… - Journal of Machine …, 2021 - jmlr.org
STABLE-BASELINES3 provides open-source implementations of deep reinforcement
learning (RL) algorithms in Python. The implementations have been benchmarked against …

Cleanrl: High-quality single-file implementations of deep reinforcement learning algorithms

S Huang, RFJ Dossa, C Ye, J Braga… - Journal of Machine …, 2022 - jmlr.org
CleanRL is an open-source library that provides high-quality single-file implementations of
Deep Reinforcement Learning (DRL) algorithms. These single-file implementations are self …

Pettingzoo: Gym for multi-agent reinforcement learning

J Terry, B Black, N Grammel… - Advances in …, 2021 - proceedings.neurips.cc
This paper introduces the PettingZoo library and the accompanying Agent Environment
Cycle (" AEC") games model. PettingZoo is a library of diverse sets of multi-agent …

Deep reinforcement learning for intelligent transportation systems: A survey

A Haydari, Y Yılmaz - IEEE Transactions on Intelligent …, 2020 - ieeexplore.ieee.org
Latest technological improvements increased the quality of transportation. New data-driven
approaches bring out a new research direction for all control-based systems, eg, in …

Metadrive: Composing diverse driving scenarios for generalizable reinforcement learning

Q Li, Z Peng, L Feng, Q Zhang, Z Xue… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Driving safely requires multiple capabilities from human and intelligent agents, such as the
generalizability to unseen environments, the safety awareness of the surrounding traffic, and …

Structured state space models for in-context reinforcement learning

C Lu, Y Schroecker, A Gu, E Parisotto… - Advances in …, 2024 - proceedings.neurips.cc
Structured state space sequence (S4) models have recently achieved state-of-the-art
performance on long-range sequence modeling tasks. These models also have fast …

Monotonic value function factorisation for deep multi-agent reinforcement learning

T Rashid, M Samvelyan, CS De Witt, G Farquhar… - Journal of Machine …, 2020 - jmlr.org
In many real-world settings, a team of agents must coordinate its behaviour while acting in a
decentralised fashion. At the same time, it is often possible to train the agents in a …