A universal framework of the generalized Kalman–Yakubovich–Popov lemma for singular fractional-order systems

Y Li, Y Wei, Y Chen, Y Wang - IEEE Transactions on Systems …, 2019 - ieeexplore.ieee.org
The well-known generalized Kalman–Yakubovich–Popov lemma is widely used in system
analysis and synthesis. However, the corresponding theory for singular systems, especially …

Almost every single-input LQR optimal control problem admits a PD feedback solution

C Bhawal, D Pal - IEEE Control Systems Letters, 2019 - ieeexplore.ieee.org
In this letter, we prove that almost every infinite-horizon linear quadratic regulator (LQR)
control problem with single-input admits an optimal solution in the form of a feedback that is …

Imaginary axis eigenvalues of Hamiltonian matrix: controllability, defectiveness and the ϵ-characteristic

A Kothyari, C Bhawal, MN Belur… - International Journal of …, 2023 - Taylor & Francis
The eigenstructure of imaginary axis eigenvalues of a Hamiltonian matrix is of importance in
many fields of control systems, for example, in stability analysis of linear Hamiltonian …

[图书][B] Multi-model Jumping Systems: Robust Filtering and Fault Detection

S He, X Luan - 2021 - Springer
As a kind of special stochastic system, multi-model jumping system has received in-depth
research, and a lot of innovative results have been achieved due to the profound influence …

Lossless trajectories of singularly passive systems

C Bhawal, D Pal, MN Belur - IFAC-PapersOnLine, 2022 - Elsevier
Lossless trajectories of a passive system are the trajectories that satisfy the dissipation
inequality with equality. In other words, for a suitable input-state-output representation, these …

A universal framework of GKYP lemma for singular fractional order systems

Y Li, Y Wei, Y Chen, Y Wang - arXiv preprint arXiv:1901.07260, 2019 - arxiv.org
The well-known GKYP is widely used in system analysis, but for singular systems, especially
singular fractional order systems, there is no corresponding theory, for which many control …