Recent advances in adversarial training for adversarial robustness

T Bai, J Luo, J Zhao, B Wen, Q Wang - arXiv preprint arXiv:2102.01356, 2021 - arxiv.org
Adversarial training is one of the most effective approaches defending against adversarial
examples for deep learning models. Unlike other defense strategies, adversarial training …

Reinforcement learning for selective key applications in power systems: Recent advances and future challenges

X Chen, G Qu, Y Tang, S Low… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
With large-scale integration of renewable generation and distributed energy resources,
modern power systems are confronted with new operational challenges, such as growing …

Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network robustness verification

S Wang, H Zhang, K Xu, X Lin, S Jana… - Advances in …, 2021 - proceedings.neurips.cc
Bound propagation based incomplete neural network verifiers such as CROWN are very
efficient and can significantly accelerate branch-and-bound (BaB) based complete …

Robust reinforcement learning: A review of foundations and recent advances

J Moos, K Hansel, H Abdulsamad, S Stark… - Machine Learning and …, 2022 - mdpi.com
Reinforcement learning (RL) has become a highly successful framework for learning in
Markov decision processes (MDP). Due to the adoption of RL in realistic and complex …

A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability

X Huang, D Kroening, W Ruan, J Sharp, Y Sun… - Computer Science …, 2020 - Elsevier
In the past few years, significant progress has been made on deep neural networks (DNNs)
in achieving human-level performance on several long-standing tasks. With the broader …

Resilient machine learning for networked cyber physical systems: A survey for machine learning security to securing machine learning for CPS

FO Olowononi, DB Rawat, C Liu - … Communications Surveys & …, 2020 - ieeexplore.ieee.org
Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and
information or cyber worlds. Their deployment in critical infrastructure have demonstrated a …

Adversarial policies: Attacking deep reinforcement learning

A Gleave, M Dennis, C Wild, N Kant, S Levine… - arXiv preprint arXiv …, 2019 - arxiv.org
Deep reinforcement learning (RL) policies are known to be vulnerable to adversarial
perturbations to their observations, similar to adversarial examples for classifiers. However …

Robust deep reinforcement learning against adversarial perturbations on state observations

H Zhang, H Chen, C Xiao, B Li, M Liu… - Advances in …, 2020 - proceedings.neurips.cc
A deep reinforcement learning (DRL) agent observes its states through observations, which
may contain natural measurement errors or adversarial noises. Since the observations …

Policy gradient method for robust reinforcement learning

Y Wang, S Zou - International conference on machine …, 2022 - proceedings.mlr.press
This paper develops the first policy gradient method with global optimality guarantee and
complexity analysis for robust reinforcement learning under model mismatch. Robust …

[HTML][HTML] Leveraging reinforcement learning for dynamic traffic control: A survey and challenges for field implementation

Y Han, M Wang, L Leclercq - Communications in Transportation Research, 2023 - Elsevier
In recent years, the advancement of artificial intelligence techniques has led to significant
interest in reinforcement learning (RL) within the traffic and transportation community …