Self-supervised learning for recommender systems: A survey

J Yu, H Yin, X Xia, T Chen, J Li… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
In recent years, neural architecture-based recommender systems have achieved
tremendous success, but they still fall short of expectation when dealing with highly sparse …

[HTML][HTML] A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation

AA Khan, O Chaudhari, R Chandra - Expert Systems with Applications, 2023 - Elsevier
Class imbalance (CI) in classification problems arises when the number of observations
belonging to one class is lower than the other. Ensemble learning combines multiple models …

G-mixup: Graph data augmentation for graph classification

X Han, Z Jiang, N Liu, X Hu - International Conference on …, 2022 - proceedings.mlr.press
This work develops mixup for graph data. Mixup has shown superiority in improving the
generalization and robustness of neural networks by interpolating features and labels …

Unleashing the power of graph data augmentation on covariate distribution shift

Y Sui, Q Wu, J Wu, Q Cui, L Li, J Zhou… - Advances in Neural …, 2024 - proceedings.neurips.cc
The issue of distribution shifts is emerging as a critical concern in graph representation
learning. From the perspective of invariant learning and stable learning, a recently well …

Data-centric artificial intelligence: A survey

D Zha, ZP Bhat, KH Lai, F Yang, Z Jiang… - arXiv preprint arXiv …, 2023 - arxiv.org
Artificial Intelligence (AI) is making a profound impact in almost every domain. A vital enabler
of its great success is the availability of abundant and high-quality data for building machine …

Bond: Benchmarking unsupervised outlier node detection on static attributed graphs

K Liu, Y Dou, Y Zhao, X Ding, X Hu… - Advances in …, 2022 - proceedings.neurips.cc
Detecting which nodes in graphs are outliers is a relatively new machine learning task with
numerous applications. Despite the proliferation of algorithms developed in recent years for …

Condensing graphs via one-step gradient matching

W Jin, X Tang, H Jiang, Z Li, D Zhang, J Tang… - Proceedings of the 28th …, 2022 - dl.acm.org
As training deep learning models on large dataset takes a lot of time and resources, it is
desired to construct a small synthetic dataset with which we can train deep learning models …

Heterogeneous graph masked autoencoders

Y Tian, K Dong, C Zhang, C Zhang… - Proceedings of the AAAI …, 2023 - ojs.aaai.org
Generative self-supervised learning (SSL), especially masked autoencoders, has become
one of the most exciting learning paradigms and has shown great potential in handling …

Towards self-interpretable graph-level anomaly detection

Y Liu, K Ding, Q Lu, F Li… - Advances in Neural …, 2024 - proceedings.neurips.cc
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable
dissimilarity compared to the majority in a collection. However, current works primarily focus …

Knowledge distillation improves graph structure augmentation for graph neural networks

L Wu, H Lin, Y Huang, SZ Li - Advances in Neural …, 2022 - proceedings.neurips.cc
Graph (structure) augmentation aims to perturb the graph structure through heuristic or
probabilistic rules, enabling the nodes to capture richer contextual information and thus …