Statistical inference links data and theory in network science

L Peel, TP Peixoto, M De Domenico - Nature Communications, 2022 - nature.com
The number of network science applications across many different fields has been rapidly
increasing. Surprisingly, the development of theory and domain-specific applications often …

Machine learning and the physical sciences

G Carleo, I Cirac, K Cranmer, L Daudet, M Schuld… - Reviews of Modern …, 2019 - APS
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …

20 years of network community detection

S Fortunato, MEJ Newman - Nature Physics, 2022 - nature.com
20 years of network community detection | Nature Physics Skip to main content Thank you for
visiting nature.com. You are using a browser version with limited support for CSS. To obtain the …

Community detection and stochastic block models: recent developments

E Abbe - Journal of Machine Learning Research, 2018 - jmlr.org
The stochastic block model (SBM) is a random graph model with planted clusters. It is widely
employed as a canonical model to study clustering and community detection, and provides …

Quantum machine learning for chemistry and physics

M Sajjan, J Li, R Selvarajan, SH Sureshbabu… - Chemical Society …, 2022 - pubs.rsc.org
Machine learning (ML) has emerged as a formidable force for identifying hidden but
pertinent patterns within a given data set with the objective of subsequent generation of …

Supervised community detection with line graph neural networks

Z Chen, X Li, J Bruna - arXiv preprint arXiv:1705.08415, 2017 - arxiv.org
Traditionally, community detection in graphs can be solved using spectral methods or
posterior inference under probabilistic graphical models. Focusing on random graph …

Convolutional neural network architectures for signals supported on graphs

F Gama, AG Marques, G Leus… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Two architectures that generalize convolutional neural networks (CNNs) for the processing
of signals supported on graphs are introduced. We start with the selection graph neural …

Statistical physics of inference: Thresholds and algorithms

L Zdeborová, F Krzakala - Advances in Physics, 2016 - Taylor & Francis
Many questions of fundamental interest in today's science can be formulated as inference
problems: some partial, or noisy, observations are performed over a set of variables and the …

A review of stochastic block models and extensions for graph clustering

C Lee, DJ Wilkinson - Applied Network Science, 2019 - Springer
There have been rapid developments in model-based clustering of graphs, also known as
block modelling, over the last ten years or so. We review different approaches and …

[HTML][HTML] Entrywise eigenvector analysis of random matrices with low expected rank

E Abbe, J Fan, K Wang, Y Zhong - Annals of statistics, 2020 - ncbi.nlm.nih.gov
Recovering low-rank structures via eigenvector perturbation analysis is a common problem
in statistical machine learning, such as in factor analysis, community detection, ranking …