[HTML][HTML] Towards tangle calculus for Khovanov polynomials

A Anokhina, E Lanina, A Morozov - Nuclear Physics B, 2024 - Elsevier
We provide new evidence that the tangle calculus and “evolution” are applicable to the
Khovanov polynomials for families of long braids inside the knot diagram. We show that …

Doubled disks and satellite surfaces

G Guth, K Hayden, S Kang, JH Park - arXiv preprint arXiv:2310.19713, 2023 - arxiv.org
Conjecturally, a knot is slice if and only if its positive Whitehead double is slice. We consider
an analogue of this conjecture for slice disks in the four-ball: two slice disks of a knot are …

Thin links and Conway spheres

A Kotelskiy, L Watson, C Zibrowius - Compositio Mathematica, 2024 - cambridge.org
Thin links and Conway spheres Page 1 Thin links and Conway spheres Artem Kotelskiy,
Liam Watson and Claudius Zibrowius Compositio Math. 160 (2024), 1467–1524. doi:10.1112/S0010437X24007152 …

Rank-expanding satellites, Whitehead doubles, and Heegaard Floer homology

I Dai, M Hedden, A Mallick, M Stoffregen - arXiv preprint arXiv:2209.07512, 2022 - arxiv.org
We show that a large class of satellite operators are rank-expanding; that is, they map some
rank-one subgroup of the concordance group onto an infinite linearly independent set. Our …

A family of slice-torus invariants from the divisibility of Lee classes

T Sano, K Sato - Topology and its Applications, 2024 - Elsevier
We give a family of slice-torus invariants ss˜ c, each defined from the c-divisibility of the
reduced Lee class in a variant of reduced Khovanov homology, parameterized by prime …

Heegaard Floer multicurves of double tangles

C Zibrowius - arXiv preprint arXiv:2212.08501, 2022 - arxiv.org
We describe a simple formula for computing the Heegaard Floer multicurve invariant of
double tangles from the Heegaard Floer multicurve invariant of knot complements. A …

Khovanov homology and refined bounds for Gordian distances

L Lewark, L Marino, C Zibrowius - arXiv preprint arXiv:2409.05743, 2024 - arxiv.org
From Khovanov homology, we extract a new lower bound for the Gordian distance of knots,
which combines and strengthens the previously existing bounds coming from Rasmussen …

Slicing degree of knots

Q Qin - arXiv preprint arXiv:2404.15991, 2024 - arxiv.org
The slicing degree of a knot $ K $ is defined as the smallest integer $ k $ such that $ K $ is $
k $-slice in $\#^ n\overline {\mathbb {CP}^ 2} $ for some $ n $. In this paper, we establish …