How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …

Technical privacy metrics: a systematic survey

I Wagner, D Eckhoff - ACM Computing Surveys (Csur), 2018 - dl.acm.org
The goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system
and the amount of protection offered by privacy-enhancing technologies. In this way, privacy …

Differentially private fine-tuning of language models

D Yu, S Naik, A Backurs, S Gopi, HA Inan… - arXiv preprint arXiv …, 2021 - arxiv.org
We give simpler, sparser, and faster algorithms for differentially private fine-tuning of large-
scale pre-trained language models, which achieve the state-of-the-art privacy versus utility …

DEAL: Differentially private auction for blockchain-based microgrids energy trading

MU Hassan, MH Rehmani… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Modern smart homes are being equipped with certain renewable energy resources that can
produce their own electric energy. From time to time, these smart homes or microgrids are …

Deep learning with label differential privacy

B Ghazi, N Golowich, R Kumar… - Advances in neural …, 2021 - proceedings.neurips.cc
Abstract The Randomized Response (RR) algorithm is a classical technique to improve
robustness in survey aggregation, and has been widely adopted in applications with …

Concentrated differential privacy: Simplifications, extensions, and lower bounds

M Bun, T Steinke - Theory of cryptography conference, 2016 - Springer
Abstract “Concentrated differential privacy” was recently introduced by Dwork and Rothblum
as a relaxation of differential privacy, which permits sharper analyses of many privacy …

Private empirical risk minimization: Efficient algorithms and tight error bounds

R Bassily, A Smith, A Thakurta - 2014 IEEE 55th annual …, 2014 - ieeexplore.ieee.org
Convex empirical risk minimization is a basic tool in machine learning and statistics. We
provide new algorithms and matching lower bounds for differentially private convex …

The complexity of differential privacy

S Vadhan - Tutorials on the Foundations of Cryptography …, 2017 - Springer
Differential privacy is a theoretical framework for ensuring the privacy of individual-level data
when performing statistical analysis of privacy-sensitive datasets. This tutorial provides an …

Differentially private data publishing and analysis: A survey

T Zhu, G Li, W Zhou, SY Philip - IEEE Transactions on …, 2017 - ieeexplore.ieee.org
Differential privacy is an essential and prevalent privacy model that has been widely
explored in recent decades. This survey provides a comprehensive and structured overview …

Practical locally private heavy hitters

R Bassily, K Nissim, U Stemmer… - Advances in Neural …, 2017 - proceedings.neurips.cc
We present new practical local differentially private heavy hitters algorithms achieving
optimal or near-optimal worst-case error--TreeHist and Bitstogram. In both algorithms, server …