Computing graph neural networks: A survey from algorithms to accelerators

S Abadal, A Jain, R Guirado, J López-Alonso… - ACM Computing …, 2021 - dl.acm.org
Graph Neural Networks (GNNs) have exploded onto the machine learning scene in recent
years owing to their capability to model and learn from graph-structured data. Such an ability …

A comprehensive survey on distributed training of graph neural networks

H Lin, M Yan, X Ye, D Fan, S Pan… - Proceedings of the …, 2023 - ieeexplore.ieee.org
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model
in broad application fields for their effectiveness in learning over graphs. To scale GNN …

Spatten: Efficient sparse attention architecture with cascade token and head pruning

H Wang, Z Zhang, S Han - 2021 IEEE International Symposium …, 2021 - ieeexplore.ieee.org
The attention mechanism is becoming increasingly popular in Natural Language Processing
(NLP) applications, showing superior performance than convolutional and recurrent …

A unified lottery ticket hypothesis for graph neural networks

T Chen, Y Sui, X Chen, A Zhang… - … conference on machine …, 2021 - proceedings.mlr.press
With graphs rapidly growing in size and deeper graph neural networks (GNNs) emerging,
the training and inference of GNNs become increasingly expensive. Existing network weight …

Trustworthy graph neural networks: Aspects, methods and trends

H Zhang, B Wu, X Yuan, S Pan, H Tong… - arXiv preprint arXiv …, 2022 - arxiv.org
Graph neural networks (GNNs) have emerged as a series of competent graph learning
methods for diverse real-world scenarios, ranging from daily applications like …

GCN-RL circuit designer: Transferable transistor sizing with graph neural networks and reinforcement learning

H Wang, K Wang, J Yang, L Shen… - 2020 57th ACM/IEEE …, 2020 - ieeexplore.ieee.org
Automatic transistor sizing is a challenging problem in circuit design due to the large design
space, complex performance tradeoffs, and fast technology advancements. Although there …

AWB-GCN: A graph convolutional network accelerator with runtime workload rebalancing

T Geng, A Li, R Shi, C Wu, T Wang, Y Li… - 2020 53rd Annual …, 2020 - ieeexplore.ieee.org
Deep learning systems have been successfully applied to Euclidean data such as images,
video, and audio. In many applications, however, information and their relationships are …

I-GCN: A graph convolutional network accelerator with runtime locality enhancement through islandization

T Geng, C Wu, Y Zhang, C Tan, C Xie, H You… - MICRO-54: 54th annual …, 2021 - dl.acm.org
Graph Convolutional Networks (GCNs) have drawn tremendous attention in the past three
years. Compared with other deep learning modalities, high-performance hardware …

GCNAX: A flexible and energy-efficient accelerator for graph convolutional neural networks

J Li, A Louri, A Karanth… - 2021 IEEE International …, 2021 - ieeexplore.ieee.org
Graph convolutional neural networks (GCNs) have emerged as an effective approach to
extend deep learning for graph data analytics. Given that graphs are usually irregular, as …

Graph neural networks for intelligent transportation systems: A survey

S Rahmani, A Baghbani, N Bouguila… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Graph neural networks (GNNs) have been extensively used in a wide variety of domains in
recent years. Owing to their power in analyzing graph-structured data, they have become …