Effective whole-body pose estimation with two-stages distillation

Z Yang, A Zeng, C Yuan, Y Li - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Whole-body pose estimation localizes the human body, hand, face, and foot keypoints in an
image. This task is challenging due to multi-scale body parts, fine-grained localization for …

Performance enhancement of artificial intelligence: A survey

M Krichen, MS Abdalzaher - Journal of Network and Computer Applications, 2024 - Elsevier
The advent of machine learning (ML) and Artificial intelligence (AI) has brought about a
significant transformation across multiple industries, as it has facilitated the automation of …

Graphadapter: Tuning vision-language models with dual knowledge graph

X Li, D Lian, Z Lu, J Bai, Z Chen… - Advances in Neural …, 2024 - proceedings.neurips.cc
Adapter-style efficient transfer learning (ETL) has shown excellent performance in the tuning
of vision-language models (VLMs) under the low-data regime, where only a few additional …

Knowledge diffusion for distillation

T Huang, Y Zhang, M Zheng, S You… - Advances in …, 2023 - proceedings.neurips.cc
The representation gap between teacher and student is an emerging topic in knowledge
distillation (KD). To reduce the gap and improve the performance, current methods often …

From knowledge distillation to self-knowledge distillation: A unified approach with normalized loss and customized soft labels

Z Yang, A Zeng, Z Li, T Zhang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Knowledge Distillation (KD) uses the teacher's prediction logits as soft labels to
guide the student, while self-KD does not need a real teacher to require the soft labels. This …

One-for-all: Bridge the gap between heterogeneous architectures in knowledge distillation

Z Hao, J Guo, K Han, Y Tang, H Hu… - Advances in Neural …, 2024 - proceedings.neurips.cc
Abstract Knowledge distillation (KD) has proven to be a highly effective approach for
enhancing model performance through a teacher-student training scheme. However, most …

Automated knowledge distillation via monte carlo tree search

L Li, P Dong, Z Wei, Y Yang - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
In this paper, we present Auto-KD, the first automated search framework for optimal
knowledge distillation design. Traditional distillation techniques typically require handcrafted …

Densely knowledge-aware network for multivariate time series classification

Z Xiao, H Xing, R Qu, L Feng, S Luo… - … on Systems, Man …, 2024 - ieeexplore.ieee.org
Multivariate time series classification (MTSC) based on deep learning (DL) has attracted
increasingly more research attention. The performance of a DL-based MTSC algorithm is …

Logit standardization in knowledge distillation

S Sun, W Ren, J Li, R Wang… - Proceedings of the IEEE …, 2024 - openaccess.thecvf.com
Abstract Knowledge distillation involves transferring soft labels from a teacher to a student
using a shared temperature-based softmax function. However the assumption of a shared …

Kd-zero: Evolving knowledge distiller for any teacher-student pairs

L Li, P Dong, A Li, Z Wei… - Advances in Neural …, 2023 - proceedings.neurips.cc
Abstract Knowledge distillation (KD) has emerged as an effective technique for compressing
models that can enhance the lightweight model. Conventional KD methods propose various …