Lithium–sulfur battery cathode design: tailoring metal‐based nanostructures for robust polysulfide adsorption and catalytic conversion

SF Ng, MYL Lau, WJ Ong - Advanced Materials, 2021 - Wiley Online Library
Abstract Lithium–sulfur (Li‐S) batteries have a high specific energy capacity and density of
1675 mAh g− 1 and 2670 Wh kg− 1, respectively, rendering them among the most promising …

Interface Engineering Toward Expedited Li2S Deposition in Lithium–Sulfur Batteries: A Critical Review

J Sun, Y Liu, L Liu, J Bi, S Wang, Z Du, H Du… - Advanced …, 2023 - Wiley Online Library
Lithium–sulfur batteries (LSBs) with superior energy density are among the most promising
candidates of next‐generation energy storage techniques. As the key step contributing to …

Will lithium‐sulfur batteries be the next beyond‐lithium ion batteries and even much better?

J Sun, T Wang, Y Gao, Z Pan, R Hu, J Wang - InfoMat, 2022 - Wiley Online Library
Lithium‐ion batteries (LIBs) are undoubtedly the current working‐horse in almost all portable
electronic devices, electric vehicles, and even large‐scale stationary energy storage. Given …

Current status and future prospects of metal–sulfur batteries

SH Chung, A Manthiram - Advanced Materials, 2019 - Wiley Online Library
Lithium–sulfur batteries are a major focus of academic and industrial energy‐storage
research due to their high theoretical energy density and the use of low‐cost materials. The …

Revisiting the role of polysulfides in lithium–sulfur batteries

G Li, S Wang, Y Zhang, M Li, Z Chen… - Advanced Materials, 2018 - Wiley Online Library
Intermediate polysulfides (Sn, where n= 2–8) play a critical role in both mechanistic
understanding and performance improvement of lithium–sulfur batteries. The rational …

Designing high-energy lithium–sulfur batteries

ZW Seh, Y Sun, Q Zhang, Y Cui - Chemical society reviews, 2016 - pubs.rsc.org
Due to their high energy density and low material cost, lithium–sulfur batteries represent a
promising energy storage system for a multitude of emerging applications, ranging from …

Optimizing redox reactions in aprotic lithium–sulfur batteries

A Hu, M Zhou, T Lei, Y Hu, X Du, C Gong… - Advanced Energy …, 2020 - Wiley Online Library
The lithium–sulfur battery is regarded as one of the promising energy‐storage devices
beyond lithium‐ion battery due to its overwhelming energy density. The aprotic Li–S …

Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S

R Younesi, GM Veith, P Johansson… - Energy & …, 2015 - pubs.rsc.org
Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial
rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3–4 V cathode …

Rechargeable metal-sulfur batteries: Key materials to mechanisms

W Yao, K Liao, T Lai, H Sul, A Manthiram - Chemical Reviews, 2024 - ACS Publications
Rechargeable metal-sulfur batteries are considered promising candidates for energy
storage due to their high energy density along with high natural abundance and low cost of …

Recent advances in electrolytes for lithium–sulfur batteries

S Zhang, K Ueno, K Dokko… - Advanced Energy …, 2015 - Wiley Online Library
The rapidly increasing demand for electrical and hybrid vehicles and stationary energy
storage requires the development of “beyond Li‐ion batteries” with high energy densities …