Deep learning on image denoising: An overview

C Tian, L Fei, W Zheng, Y Xu, W Zuo, CW Lin - Neural Networks, 2020 - Elsevier
Deep learning techniques have received much attention in the area of image denoising.
However, there are substantial differences in the various types of deep learning methods …

Advances in data preprocessing for biomedical data fusion: An overview of the methods, challenges, and prospects

S Wang, ME Celebi, YD Zhang, X Yu, S Lu, X Yao… - Information …, 2021 - Elsevier
Due to the proliferation of biomedical imaging modalities, such as Photoacoustic
Tomography, Computed Tomography (CT), Optical Microscopy and Tomography, etc …

Multi-stage image denoising with the wavelet transform

C Tian, M Zheng, W Zuo, B Zhang, Y Zhang, D Zhang - Pattern Recognition, 2023 - Elsevier
Deep convolutional neural networks (CNNs) are used for image denoising via automatically
mining accurate structure information. However, most of existing CNNs depend on enlarging …

[HTML][HTML] Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images

R Ranjbarzadeh, A Bagherian Kasgari… - Scientific Reports, 2021 - nature.com
Brain tumor localization and segmentation from magnetic resonance imaging (MRI) are hard
and important tasks for several applications in the field of medical analysis. As each brain …

Pre-trained image processing transformer

H Chen, Y Wang, T Guo, C Xu… - Proceedings of the …, 2021 - openaccess.thecvf.com
As the computing power of modern hardware is increasing strongly, pre-trained deep
learning models (eg, BERT, GPT-3) learned on large-scale datasets have shown their …

A robust deformed convolutional neural network (CNN) for image denoising

Q Zhang, J Xiao, C Tian… - CAAI Transactions on …, 2023 - Wiley Online Library
Due to strong learning ability, convolutional neural networks (CNNs) have been developed
in image denoising. However, convolutional operations may change original distributions of …

Deep learning enabled semantic communication systems

H Xie, Z Qin, GY Li, BH Juang - IEEE Transactions on Signal …, 2021 - ieeexplore.ieee.org
Recently, deep learned enabled end-to-end communication systems have been developed
to merge all physical layer blocks in the traditional communication systems, which make joint …

A lite distributed semantic communication system for Internet of Things

H Xie, Z Qin - IEEE Journal on Selected Areas in …, 2020 - ieeexplore.ieee.org
The rapid development of deep learning (DL) and widespread applications of Internet-of-
Things (IoT) have made the devices smarter than before, and enabled them to perform more …

Self-supervised deep correlation tracking

D Yuan, X Chang, PY Huang, Q Liu… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
The training of a feature extraction network typically requires abundant manually annotated
training samples, making this a time-consuming and costly process. Accordingly, we …

Nbnet: Noise basis learning for image denoising with subspace projection

S Cheng, Y Wang, H Huang, D Liu… - Proceedings of the …, 2021 - openaccess.thecvf.com
In this paper, we introduce NBNet, a novel framework for image denoising. Unlike previous
works, we propose to tackle this challenging problem from a new perspective: noise …