Modern Koopman theory for dynamical systems

SL Brunton, M Budišić, E Kaiser, JN Kutz - arXiv preprint arXiv:2102.12086, 2021 - arxiv.org
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …

Data-driven modeling for unsteady aerodynamics and aeroelasticity

J Kou, W Zhang - Progress in Aerospace Sciences, 2021 - Elsevier
Aerodynamic modeling plays an important role in multiphysics and design problems, in
addition to experiment and numerical simulation, due to its low-dimensional representation …

[图书][B] Data-driven science and engineering: Machine learning, dynamical systems, and control

SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …

Modal analysis of fluid flows: Applications and outlook

K Taira, MS Hemati, SL Brunton, Y Sun, K Duraisamy… - AIAA journal, 2020 - arc.aiaa.org
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …

Physics-informed dynamic mode decomposition

PJ Baddoo, B Herrmann… - … of the Royal …, 2023 - royalsocietypublishing.org
In this work, we demonstrate how physical principles—such as symmetries, invariances and
conservation laws—can be integrated into the dynamic mode decomposition (DMD). DMD is …

Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization

PJ Baddoo, B Herrmann… - Proceedings of the …, 2022 - royalsocietypublishing.org
Research in modern data-driven dynamical systems is typically focused on the three key
challenges of high dimensionality, unknown dynamics and nonlinearity. The dynamic mode …

Challenges in dynamic mode decomposition

Z Wu, SL Brunton, S Revzen - Journal of the Royal …, 2021 - royalsocietypublishing.org
Dynamic mode decomposition (DMD) is a powerful tool for extracting spatial and temporal
patterns from multi-dimensional time series, and it has been used successfully in a wide …

Higher-order dynamic mode decomposition on-the-fly: A low-order algorithm for complex fluid flows

C Amor, P Schlatter, R Vinuesa… - Journal of Computational …, 2023 - Elsevier
This article presents a new method to identify the main patterns describing the flow motion in
complex flows. The algorithm is an extension of the higher-order dynamic mode …

Adaptive learning of effective dynamics for online modeling of complex systems

I Kičić, PR Vlachas, G Arampatzis… - Computer Methods in …, 2023 - Elsevier
Predictive simulations are essential for applications ranging from weather forecasting to
material design. The veracity of these simulations hinges on their capacity to capture the …

An efficient streaming algorithm for spectral proper orthogonal decomposition

OT Schmidt, A Towne - Computer Physics Communications, 2019 - Elsevier
A streaming algorithm to compute the spectral proper orthogonal decomposition (SPOD) of
stationary random processes is presented. As new data becomes available, an incremental …