[HTML][HTML] Privacy-preserving artificial intelligence in healthcare: Techniques and applications

N Khalid, A Qayyum, M Bilal, A Al-Fuqaha… - Computers in Biology and …, 2023 - Elsevier
There has been an increasing interest in translating artificial intelligence (AI) research into
clinically-validated applications to improve the performance, capacity, and efficacy of …

Membership inference attacks on machine learning: A survey

H Hu, Z Salcic, L Sun, G Dobbie, PS Yu… - ACM Computing Surveys …, 2022 - dl.acm.org
Machine learning (ML) models have been widely applied to various applications, including
image classification, text generation, audio recognition, and graph data analysis. However …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arXiv preprint arXiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Trustworthy LLMs: A survey and guideline for evaluating large language models' alignment

Y Liu, Y Yao, JF Ton, X Zhang, RGH Cheng… - arXiv preprint arXiv …, 2023 - arxiv.org
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …

Generative adversarial networks: A survey toward private and secure applications

Z Cai, Z Xiong, H Xu, P Wang, W Li, Y Pan - ACM Computing Surveys …, 2021 - dl.acm.org
Generative Adversarial Networks (GANs) have promoted a variety of applications in
computer vision and natural language processing, among others, due to its generative …

When machine learning meets privacy: A survey and outlook

B Liu, M Ding, S Shaham, W Rahayu… - ACM Computing …, 2021 - dl.acm.org
The newly emerged machine learning (eg, deep learning) methods have become a strong
driving force to revolutionize a wide range of industries, such as smart healthcare, financial …

Large image datasets: A pyrrhic win for computer vision?

A Birhane, VU Prabhu - 2021 IEEE Winter Conference on …, 2021 - ieeexplore.ieee.org
In this paper we investigate problematic practices and consequences of large scale vision
datasets (LSVDs). We examine broad issues such as the question of consent and justice as …

A survey of incentive mechanism design for federated learning

Y Zhan, J Zhang, Z Hong, L Wu, P Li… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Federated learning is promising in enabling large-scale machine learning by massive
clients without exposing their raw data. It can not only enable the clients to preserve the …

Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives

P Liu, X Xu, W Wang - Cybersecurity, 2022 - Springer
Abstract Empirical attacks on Federated Learning (FL) systems indicate that FL is fraught
with numerous attack surfaces throughout the FL execution. These attacks can not only …

Differentially private learning needs better features (or much more data)

F Tramer, D Boneh - arXiv preprint arXiv:2011.11660, 2020 - arxiv.org
We demonstrate that differentially private machine learning has not yet reached its" AlexNet
moment" on many canonical vision tasks: linear models trained on handcrafted features …