3D object detection for autonomous driving: A comprehensive survey

J Mao, S Shi, X Wang, H Li - International Journal of Computer Vision, 2023 - Springer
Autonomous driving, in recent years, has been receiving increasing attention for its potential
to relieve drivers' burdens and improve the safety of driving. In modern autonomous driving …

Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges

D Feng, C Haase-Schütz, L Rosenbaum… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
Recent advancements in perception for autonomous driving are driven by deep learning. In
order to achieve robust and accurate scene understanding, autonomous vehicles are …

Bevfusion: A simple and robust lidar-camera fusion framework

T Liang, H Xie, K Yu, Z Xia, Z Lin… - Advances in …, 2022 - proceedings.neurips.cc
Fusing the camera and LiDAR information has become a de-facto standard for 3D object
detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to …

Futr3d: A unified sensor fusion framework for 3d detection

X Chen, T Zhang, Y Wang, Y Wang… - proceedings of the …, 2023 - openaccess.thecvf.com
Sensor fusion is an essential topic in many perception systems, such as autonomous driving
and robotics. Existing multi-modal 3D detection models usually involve customized designs …

Centerfusion: Center-based radar and camera fusion for 3d object detection

R Nabati, H Qi - Proceedings of the IEEE/CVF Winter …, 2021 - openaccess.thecvf.com
The perception system in autonomous vehicles is respon-sible for detecting and tracking the
surrounding objects. This is usually done by taking advantage of several sens-ing modalities …

Towards deep radar perception for autonomous driving: Datasets, methods, and challenges

Y Zhou, L Liu, H Zhao, M López-Benítez, L Yu, Y Yue - Sensors, 2022 - mdpi.com
With recent developments, the performance of automotive radar has improved significantly.
The next generation of 4D radar can achieve imaging capability in the form of high …

Milestones in autonomous driving and intelligent vehicles—part ii: Perception and planning

L Chen, S Teng, B Li, X Na, Y Li, Z Li… - … on Systems, Man …, 2023 - ieeexplore.ieee.org
A growing interest in autonomous driving (AD) and intelligent vehicles (IVs) is fueled by their
promise for enhanced safety, efficiency, and economic benefits. While previous surveys …

Robust multimodal vehicle detection in foggy weather using complementary lidar and radar signals

K Qian, S Zhu, X Zhang, LE Li - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Vehicle detection with visual sensors like lidar and camera is one of the critical functions
enabling autonomous driving. While they generate fine-grained point clouds or high …

A deep learning-based radar and camera sensor fusion architecture for object detection

F Nobis, M Geisslinger, M Weber, J Betz… - 2019 Sensor Data …, 2019 - ieeexplore.ieee.org
Object detection in camera images, using deep learning has been proven successfully in
recent years. Rising detection rates and computationally efficient network structures are …

A review of vehicle detection techniques for intelligent vehicles

Z Wang, J Zhan, C Duan, X Guan… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Robust and efficient vehicle detection is an important task of environment perception of
intelligent vehicles, which directly affects the behavior decision-making and motion planning …